www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesTermabschätzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Termabschätzung
Termabschätzung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Termabschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Do 03.05.2018
Autor: Manu271

Aufgabe
Sei n [mm] \in \IN, [/mm] 0 < [mm] \beta [/mm] < 1, K [mm] =(1-\beta)\bruch{n}{2} [/mm] und 2 [mm] \le [/mm] k [mm] \le [/mm] K.
[mm] \bruch{{n \choose k-1}}{{n-2 \choose k-2}} \sum_{i=1}^{k-1} \left(\bruch{k-1}{n-k+2}\right)^{k-i-1} \le \bruch{n^2}{k(n-2k)} [/mm]

Hallo,

mein Anliegen entspringt nicht direkt einer Aufgabe. Ich versuche zur Zeit ein Paper nachzuvollziehen und kann obige Ungleichung noch nicht rekonstruieren. Ich hoffe jemand von euch kann mir den Gedankengang des Autors erklären?
Die beste obere Schranke die ich gefunden habe ist [mm] \bruch{n(n-1)}{n-k+1}, [/mm] indem ich die Summe durch (k-1)*1 abgeschätzt habe.

Ich bin für jede Hilfe dankbar!

LG
Manu


        
Bezug
Termabschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Do 03.05.2018
Autor: abakus

Du musst die Entstehung dieser Ungleichung nicht zwangsläufig rekonstruieren können. Möglicherweise hat sie ein genialer Geist gefunden und uns unbedeutenden Sterblichen hinterlassen.
;-)

Wie wäre es mit dem Versuch, die einmal vorgegebene Ungleichung per Induktion zu beweisen?


Bezug
        
Bezug
Termabschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Fr 04.05.2018
Autor: fred97


> Sei n [mm]\in \IN,[/mm] 0 < [mm]\beta[/mm] < 1, K [mm]=(1-\beta)\bruch{n}{2}[/mm] und
> 2 [mm]\le[/mm] k [mm]\le[/mm] K.
>  [mm]\bruch{{n \choose k-1}}{{n-2 \choose k-2}} \sum_{i=1}^{k-1} \left(\bruch{k-1}{n-k+2}\right)^{k-i-1} \le \bruch{n^2}{k(n-2k)}[/mm]
>  
> Hallo,
>  
> mein Anliegen entspringt nicht direkt einer Aufgabe. Ich
> versuche zur Zeit ein Paper nachzuvollziehen und kann obige
> Ungleichung noch nicht rekonstruieren. Ich hoffe jemand von
> euch kann mir den Gedankengang des Autors erklären?
>  Die beste obere Schranke die ich gefunden habe ist
> [mm]\bruch{n(n-1)}{n-k+1},[/mm] indem ich die Summe durch (k-1)*1
> abgeschätzt habe.
>
> Ich bin für jede Hilfe dankbar!
>  
> LG
>  Manu
>  

Wenn ich mich nicht vertan habe, so ist die Ungleichung im Falle $ [mm] \beta=1/2$, [/mm] n=12 und k=2 falsch:

mit diesen Zutaten lautet sie

12 [mm] \le [/mm] 9.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]