www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikTesttheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Testtheorie
Testtheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Testtheorie: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:04 Fr 05.02.2010
Autor: elba

Aufgabe
Eine Münze werde 5 mal geworfen. Geben sie für das Nivewau [mm] \alpha=0,05 [/mm] einen möglichst guten Test für

[mm] H:p\ge \bruch{2}{3} [/mm] gegen K: p< [mm] \bruch{2}{3} [/mm]
an.

um das zu machen, muss man ja den naiven Schätzer bestimmen und ein [mm] \gamma [/mm] bestimmen, für das die W'keit für einen Fehler 1.Art höchstens gleich [mm] \alpha [/mm] ist.
so der naive Schätzer ist ja [mm] \bruch{1}{n}\summe_{i=1}^{n} X_i=3. [/mm] Oder??
Dann:
[mm] \IP(^p\ge \gamma)\le [/mm] 0,05.
Jetzt weiß ich allerdings nicht wie ich weiter machen muss, um [mm] \gamma [/mm] zu bestimmen.
Danke für die Hilfe!!

        
Bezug
Testtheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Fr 05.02.2010
Autor: tobit09

Hallo elba,

> Eine Münze werde 5 mal geworfen. Geben sie für das
> Nivewau [mm]\alpha=0,05[/mm] einen möglichst guten Test für
>  
> [mm]H:p\ge \bruch{2}{3}[/mm] gegen K: p< [mm]\bruch{2}{3}[/mm]
>  an.

Der Parameter p gibt anscheinend die Wahrscheinlichkeit bei einem Wurf der Münze für Zahl an? Er kann aus dem gesamten Intervall $[0,1]$ stammen? Ich nehme mal an, ihr hattet nur nichtrandomisierte Tests? (Wenn du noch nie etwas von randomisierten Tests gehört haben solltest, spräche das sehr dafür.)

Bevor wir zur eigentlichen Testtheorie kommen können: Wenn X eine Zufallsgröße ist, die für die Anzahl, wie oft Zahl geworfen wurde, steht: Wie lautet dann die Verteilung von X, wenn p der wahre Parameter ist?

>  um das zu machen, muss man ja den naiven Schätzer
> bestimmen

Test, nicht Schätzer.

> und ein [mm]\gamma[/mm] bestimmen, für das die W'keit
> für einen Fehler 1.Art höchstens gleich [mm]\alpha[/mm] ist.

Ich kenne eure Notation nicht, daher weiß ich nicht, wofür [mm] $\gamma$ [/mm] steht; aber das klingt richtig.

> so der naive Schätzer ist ja [mm]\bruch{1}{n}\summe_{i=1}^{n} X_i=3.[/mm]

Wie kommst du darauf? Das ist jedenfalls ein Ereignis, kein Schätzer oder Test.

>  Dann:
>  [mm]\IP(^p\ge \gamma)\le[/mm] 0,05.

??? Tippfehler?

Wie sieht denn der naive Test (in Abhängigkeit vom noch geeignet zu bestimmenden [mm] $\gamma$) [/mm] aus? Er muss ja eine Funktion [mm] $\varphi: \{0,\ldots5\}\to\{0,1\}$ [/mm] sein, wobei [mm] $\varphi(i)=1$ [/mm] bedeutet, dass man sich bei i oft auftretender Zahl für die Alternative K entscheidet [mm] ($\varphi(i)=0$ [/mm] entsprechend mit Hypothese H statt Alternative). Oder habt ihr Tests anders definiert? (Wie?)

Und welche Bedingung muss [mm] $\varphi$ [/mm] erfüllen, damit dieser Test ein Test zum Niveau [mm] $\alpha=0,05$ [/mm] ist?

Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]