www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 5-7Textaufgabe Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 5-7" - Textaufgabe Gleichungen
Textaufgabe Gleichungen < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Textaufgabe Gleichungen: Anfang
Status: (Frage) beantwortet Status 
Datum: 19:36 Do 13.10.2005
Autor: iBook

Hallo liebe Helfer!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe ein Problem schon mit dem Beginn folgender Matheaufgabe.

Ein Rechteck ist um 8 cm länger als breit. Verlängert man die kürzere Seite um 4 cm und verkürzt gleichzeitig die längere um 3 cm, dann nimmt der Flächeninhalt um 26 cm² zu. Wie lang sind die Seiten des ursprünglichen Rechtecks?

Ich habe die Aufgabe wie folgt versucht zu lösen:

Breite: x + 4
Länge: x + 8 - 3 = x + 5
Flächeninhalt: x² + 24

jetzt setze stelle ich die Gleichung:

(x + 4) (x + 5) = x² + 24
x² + 4x + 5 x + 20 = x² + 24
x² + 9 x + 20 = x² + 24   /- x² -20
9x = 4 / 9
x   = [mm] \bruch{4}{9} [/mm]

Das kann doch aber bei einem Rechteck nicht sein, oder?

Ich bin leider weiter überfragt, habe schon alle möglichen Konstellationen, die noch so absurd sind ausprobiert.

Ich bedanke mich für die schnelle Hilfe, die ich auch bräuchte....

Vielen Dank im Voraus

iBook

        
Bezug
Textaufgabe Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Do 13.10.2005
Autor: Bastiane

Hallo!

> Ein Rechteck ist um 8 cm länger als breit. Verlängert man
> die kürzere Seite um 4 cm und verkürzt gleichzeitig die
> längere um 3 cm, dann nimmt der Flächeninhalt um 26 cm² zu.
> Wie lang sind die Seiten des ursprünglichen Rechtecks?
>  
> Ich habe die Aufgabe wie folgt versucht zu lösen:
>  
> Breite: x + 4
>  Länge: x + 8 - 3 = x + 5
>  Flächeninhalt: x² + 24

Wie kommst du denn auf diesen Flächeninhalt?
  

> jetzt setze stelle ich die Gleichung:
>  
> (x + 4) (x + 5) = x² + 24

Diese Gleichung stimmt aber nicht. Das wäre ja höchstens der neue Flächeninhalt, du musst hier aber eine Gleichung zwischen dem alten und dem neuen haben.

>  x² + 4x + 5 x + 20 = x² + 24
>  x² + 9 x + 20 = x² + 24   /- x² -20
>  9x = 4 / 9
>  x   = [mm]\bruch{4}{9}[/mm]
>  
> Das kann doch aber bei einem Rechteck nicht sein, oder?

Wieso sollte das nicht sein können?

Gehen wir doch mal der Reihe nach vor:

Die Breite beträgt x, die Länge ist um 8 cm länger, beträgt also x+8. Damit ergibt sich ein Flächeninhalt von [mm] x(x+8)=x^2+8x. [/mm]

Nun wir die alte Breite um 4 verlängert, wir erhalten also x+4, und die alte Länge wird um 3 verkürzt, also x+8-3=x+5. Das ergibt einen neuen Flächeninhalt von (x+4)(x+5).

Und nun brauchen wir noch die Gleichung: der alte Flächeninhalt ist gleich dem neuen minus 26 [mm] cm^2. [/mm] Also:

[mm] x^2+8x+26=(x+4)(x+5) [/mm]

Kannst du diese Gleichung lösen?

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Textaufgabe Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Do 13.10.2005
Autor: iBook

Ich habe die Gleichung wie folgt gelöst:

(x+4)(x+5) = x² + 8x + 26
x² + 9x + 20 = x² + 8x + 26 /-x² - 20 - 8x
x = 6

das heißt: die Breite beträgt 6 cm und die Länge 14 cm. Eigentlich, wenn man es Schritt für Schritt macht, sehr logisch... *peinlich*

Vielen Dank für die schnelle Hilfe!!!


iBook

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]