www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Textaufgaben zu LG
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Textaufgaben zu LG
Textaufgaben zu LG < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Textaufgaben zu LG: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:12 Sa 24.09.2005
Autor: cloe

Hallo,

ich hab folgende Aufgabe zu lösen:

Ein gleichschenkliges Dreieck hat den Umfang von 40cm.

a) Jeder Schenkel ist 5cm länger als die Basis. Wie lang ist die Basis? Wie lang sind die Schenkel?

b) Jeder Schenkel ist 5cm kürzer als die Basis. Bestimme die Länge jeder Seite.

Zu a) hab ich folgendes raus:

40 = a + 2b +10
=> b = 15
      c = 15
      a = 10

Bei b) komm ich auf folgenden Ansatz:

40 = 2b + a + 5

aber irgendwie ist der Ansatz falsch.

Kann mir jemand weiterhelfen.

Danke im voraus

        
Bezug
Textaufgaben zu LG: Antwort
Status: (Antwort) fertig Status 
Datum: 10:29 Sa 24.09.2005
Autor: Karl_Pech

Hallo cloe,


> Ein gleichschenkliges Dreieck hat den Umfang von 40cm.
>  
> a) Jeder Schenkel ist 5cm länger als die Basis. Wie lang
> ist die Basis? Wie lang sind die Schenkel?
>  
> b) Jeder Schenkel ist 5cm kürzer als die Basis. Bestimme
> die Länge jeder Seite.
>  
> Zu a) hab ich folgendes raus:
>  
> 40 = a + 2b +10
>  => b = 15

> c = 15
>        a = 10


[ok]


> Bei b) komm ich auf folgenden Ansatz:
>  
> 40 = 2b + a + 5


Für den Umfang gilt: 40 = a + 2b wie Du ja schon festgestellt hast.
Wenn also b die Länge eines jeden Schenkels ist, und diese Länge um 5 cm kürzer ist, als die der Basis, so gilt doch: b = a - 5. Wenn wir das oben einsetzen, erhalten wir: $40 = a + [mm] 2\left(a-5\right) [/mm] = 3a - 10$, womit Du nun die Länge der Basis und der Schenkel rauskriegst.



Grüße
Karl





Bezug
                
Bezug
Textaufgaben zu LG: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:43 Sa 24.09.2005
Autor: cloe

Danke.

ich hab nun eine lösung raus.

a = 16,6
b = 11,6
c = 11,6

Bezug
                        
Bezug
Textaufgaben zu LG: Fast ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:51 Sa 24.09.2005
Autor: Loddar

Hallo cloe!


> a = 16,6
> b = 11,6
> c = 11,6

Du hast fast Resht!

Zum einen ist es wohl günsteriger mit Brüchen zu arbeiten, da genauer.

Zum anderen hast Du aber falsch gerundet:

$c \ = \ [mm] \bruch{50}{3} [/mm] \ = \ [mm] 16\bruch{2}{3} [/mm] \ = \ 16,66666... \ [mm] \approx\ [/mm] \ [mm] 16,\red{7}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]