www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Textgleichungen / Quadratische
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Textgleichungen / Quadratische
Textgleichungen / Quadratische < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Textgleichungen / Quadratische: Frage
Status: (Frage) beantwortet Status 
Datum: 17:23 Fr 20.05.2005
Autor: tobinf

Ich hab hier ne Aufgabe, wo ich die lösungen im kopf errechnet habe aber ich bekomm keinen Ansatz schriftlich hin.  

Also meine Aufgabe lautet :    Frau R. kauft 50 Flaschen Saft. Für Kirschsaft bezahlt sie 70 € und für Apfelsaft 60€. Eine Flasche Kirschsaft ist 1,50€ teurer als eine Flasche Apfelsaft. Wieviel Flaschen von jder Sorte kauft sie?

Meine Lösung: 20 Flaschen Kirschsaft kosten 3,50€
                        30 Flaschen Apfelsaft kosten 2€

Aber wie komm ich dahin mit rechnung? und wieso?  

Ich freue mich auf eine Antwort.
mfg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Textgleichungen / Quadratische: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Fr 20.05.2005
Autor: Andi

Hallo Tobi,

zunächst einmal herzlich [willkommenmr]!

> Also meine Aufgabe lautet :    Frau R. kauft 50 Flaschen
> Saft. Für Kirschsaft bezahlt sie 70 € und für Apfelsaft
> 60€. Eine Flasche Kirschsaft ist 1,50€ teurer als eine
> Flasche Apfelsaft. Wieviel Flaschen von jder Sorte kauft
> sie?

  

> Meine Lösung: 20 Flaschen Kirschsaft kosten 3,50€
>                          30 Flaschen Apfelsaft kosten 2€

  

> Aber wie komm ich dahin mit rechnung? und wieso?  

Also bevor du rechnen kannst, musst du deine Aufgabe in die Sprache der Mathematik übersetzen. Das bedeut nichts anderes, als alle "sprachlichen" Aussagen im Text in "mathematische" Aussagen zu verwandeln.
Und bevor du mit dem Übersetzen anfangen kannst musst du dir erst einmal ein paar Begriffe definieren.

Die Anzahl der Apfelsaftflaschen mit [mm] n_A [/mm] und die Anzahl der Kirschsaftflaschen mit [mm] n_K. [/mm] Eine Apfelsaftflasche kostet bei mir A und eine Kirschsaftflasche kostet K.

So, jetzt kann es losgehen:

"Frau R. kauft 50 Flaschen Saft."
[mm]n_K+n_A=50[/mm]
"Für Kirschsaft bezahlt sie 70 € und für Apfelsaft 60€"
[mm]n_K*K=70€[/mm] und [mm]n_A*A=60[/mm]
"Eine Flasche Kirschsaft ist 1,50€ teurer als eine Flasche Apfelsaft."
[mm]A+1,50€=K[/mm]

So jetzt kannst du mit dem "rechnen" Anfangen.

Probier mal ob du es schaffst alleine weiterzukommen.

Mit freundlichen Grüßen,
Andi

Bezug
                
Bezug
Textgleichungen / Quadratische: Frage
Status: (Frage) beantwortet Status 
Datum: 18:32 Fr 20.05.2005
Autor: tobinf

Ich komm irgendwie damit noch nich ganz weiter.
Ich habe aber eine Frage ob man nich die Unbekannten  nk  und na  weglassen kann, weil man die ja auch anders errechnen kann. Also den Preis vom apfelsaft geteilt durch den einzelpreis(a) + Preis Kirchsaft geteilt durch einzelpreis(k).   Wäre das möglich, weil das andere irgendwie krieg ich nich hin


vielen dank schonmal
mfg

Bezug
                        
Bezug
Textgleichungen / Quadratische: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:38 Fr 20.05.2005
Autor: emma

Hallo!
Meine Idee war, als ich zum ersten MAl deine Aufgabe gelesen habe, dass man ich glaube Apfelsaft durch 1,50E teilt (das was 60E gekostet hat) und bei dem anderen halt 1,50 E draufaddiert.

Bin mir aber persönlich überhaupt nicht sicher, deshalb warte auf die Antwort des anderen Mitgliedes.

MFG, Emma

Bezug
                        
Bezug
Textgleichungen / Quadratische: Lösungsweg
Status: (Antwort) fertig Status 
Datum: 22:24 Fr 20.05.2005
Autor: Beule-M

Hallo,
du hast 4 Unbekannte und 4 unabhängige Gleichungen.
Der lange Weg: eine Formel nach einer Unbekannten auflösen und in die nächste Formel einsetzen, bis eine Formel mit einer Unbekannten entsteht.
Diese Formel lösen und das Ergebnis jeweils in die vorherigen Gleichungen einsetzen.
kurzer Weg: Matrizenrechnung, Matrix aufstellen, Dreiecksmatrix erzeugen und auflösen

Bezug
                                
Bezug
Textgleichungen / Quadratische: Matrizen unbekannt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Sa 21.05.2005
Autor: informix

Hallo Matthias,
> Hallo,
>  du hast 4 Unbekannte und 4 unabhängige Gleichungen.
>  Der lange Weg: eine Formel nach einer Unbekannten auflösen
> und in die nächste Formel einsetzen, bis eine Formel mit
> einer Unbekannten entsteht.
>  Diese Formel lösen und das Ergebnis jeweils in die
> vorherigen Gleichungen einsetzen.
>  kurzer Weg: Matrizenrechnung, Matrix aufstellen,
> Dreiecksmatrix erzeugen und auflösen

Die Idee mit den Matrizen ist ja sehr schön und effektiv; aber bedenke bitte, dass der Fragesteller die Frage im Bereich "Klassen 9-10" gestellt hat und daher mit Matrizen bestimmt nicht viel anfangen kann. ;-)

Da muss man wohl den "langen" Weg gehen, der aber doch gar nicht so lang ist, wie Andi schon geschrieben hat.
Die Matrix-Schreibweise führt doch denselben Weg durch, nur in einer veränderten Schreibweise und übersichtlicher. ;-)


Bezug
                        
Bezug
Textgleichungen / Quadratische: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Fr 20.05.2005
Autor: Andi

Hallo Tobi,

> Ich komm irgendwie damit noch nich ganz weiter.
>  Ich habe aber eine Frage ob man nich die Unbekannten  nk  
> und na  weglassen kann, weil man die ja auch anders
> errechnen kann. Also den Preis vom apfelsaft geteilt durch
> den einzelpreis(a) + Preis Kirchsaft geteilt durch
> einzelpreis(k).   Wäre das möglich, weil das andere
> irgendwie krieg ich nich hin

Natürlich kann man die Unbekannten nk berechnen, aber es schadet doch nicht wenn man ihnen zum rechnen einen Namen gibt. Oder ?
Aus [mm] n_k*K=70 [/mm] folgt natürlich [mm] n_k=\bruch{70}{K}. [/mm]
Aber ich gebe den Dingen immer gerne Namen. Das ist natürlich geschmackssache.
So jetzt können wir das in unsere erste Gleichung einsetzen:
[mm] \bruch{70}{K}+\bruch{60}{A}=50 [/mm]

Wenn wir jetzt noch berücksichtigen, dass A+1,50€=K könnten wir uns auch das K sparen und an dieser Stelle immer A+1,50€ schreiben.
Denn beides ist ja offensichtlich das gleiche.

Wir erhalten damit:
[mm] \bruch{70}{A+1,50€}+\bruch{60}{A}=50 [/mm]

So jetzt haben wir eine Gleichung mit einer Unbekannten, diese kann ich lösen. Kannst du das auch?
Du siehst, eigentlich hätten wir nur die Bezeichnung A gebraucht.
Aber wie gesagt, mir fällt es einfach leichter mir Gleichungen zu überlgen wenn ich ein paar Namen habe.

Mit freundlichen Grüßen,
Andi  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]