www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieTheorem von Bernoulli
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Theorem von Bernoulli
Theorem von Bernoulli < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Theorem von Bernoulli: Herleitung
Status: (Frage) beantwortet Status 
Datum: 08:18 Fr 07.02.2020
Autor: sancho1980

Hallo

in meinem Buch wird das Gesetz der großen Zahlen vorgestellt und hergeleitet:

[mm] \limes_{n\rightarrow\infty} P(|\overline{X} [/mm] - [mm] \mu| [/mm] < [mm] \epsilon) [/mm] = 1 (1)

(Der Vollständigkeit halber: [mm] \overline{X} [/mm] := [mm] \bruch{\summe_{i=1}^{n} X_i}{n}, [/mm] wobei [mm] X_1, [/mm] ..., [mm] X_n [/mm] unabhängige und identisch verteilte Zufallsvariablen, jeweils mit Erwartungswert [mm] \mu [/mm] und Varianz [mm] {\sigma}^2 [/mm] sind.)

Direkt im Anschluss wird das Theorem von Bernoulli vorgestellt:

[mm] \limes_{n\rightarrow\infty} P(|f_n [/mm] - p| [mm] \le \epsilon) [/mm] = 1, (2)

wobei [mm] f_n [/mm] die relative Häufigkeit des Eintritts von Ereignis A mit Eintrittswahrscheinlichkeit p bei n-facher Wiederholung des Zufallsexperimentes ist.

Leider wird dieses Theorem nicht formal hergeleitet, sondern es steht nur etwas lapidar da, dass es aus dem Gesetz der großen Zahlen "folgt". Ich kann das zwar gefühlt nachvollziehen, hätte mir aber eine formale Herleitung gewünscht.

Wenn ich (1) und (2) vergleiche, dann scheint es ja folgende Entsprechungen zu geben:

[mm] f_n \hat= \overline{X} [/mm]
p [mm] \hat= \mu [/mm]

Aber:

1) Welche Entsprechungen gibt es dann für [mm] X_1, [/mm] ..., [mm] X_n? [/mm]
2) Wieso heißt es im Gesetz der großen Zahlen "< [mm] \epsilon" [/mm] und im Theorem von Bernoulli [mm] "\le \epsilon"? [/mm]

Vielen Dank,

Martin

        
Bezug
Theorem von Bernoulli: Antwort
Status: (Antwort) fertig Status 
Datum: 08:34 Fr 07.02.2020
Autor: Gonozal_IX

Hiho,

> in meinem Buch wird das Gesetz der großen Zahlen vorgestellt und hergeleitet:
>  
> [mm]\limes_{n\rightarrow\infty} P(|\overline{X}[/mm] - [mm]\mu|[/mm] <
> [mm]\epsilon)[/mm] = 1 (1)

Genauer: Das schwache Gesetz der großen Zahlen.
Und: Eine Frage kannst du dir faktisch selbst beantworten, wenn du das korrekt hinschreibst. Da fehlt nämlich noch ein [mm] $\forall\varepsilon [/mm] > 0$ davor.


> Leider wird dieses Theorem nicht formal hergeleitet,
> sondern es steht nur etwas lapidar da, dass es aus dem
> Gesetz der großen Zahlen "folgt". Ich kann das zwar
> gefühlt nachvollziehen, hätte mir aber eine formale
> Herleitung gewünscht.

Es "folgt" nicht daraus, sondern ist schlicht ein Spezialfall davon.

> 1) Welche Entsprechungen gibt es dann für [mm]X_1,[/mm] ..., [mm]X_n?[/mm]

Formal kann man das wie folgt modellieren:
Sei [mm] $X_i [/mm] = [mm] \begin{cases} 1 & \text{ Ereignis A tritt ein } \\ 0 & \text{ sonst} \end{cases}$ [/mm]

Dann ist [mm] $f_n [/mm]  = [mm] \overline{X}$ [/mm] und [mm] $\mu$ [/mm] rechnest du mal selbst aus.

>  2) Wieso heißt es im Gesetz der großen Zahlen "<
> [mm]\epsilon"[/mm] und im Theorem von Bernoulli [mm]"\le \epsilon"?[/mm]

Wie oben angemerkt: Vorne dran steht ja ein [mm] $\forall \varepsilon>0$ [/mm] , d.h. es ist schlichtweg egal, ob da ein < oder ein [mm] \le [/mm] steht.

Du kannst es ja gern mal formal beweisen, d.h. zeige:
[mm] $\forall\varepsilon>0 \limes_{n\rightarrow\infty} P(|\overline{X} [/mm] - [mm] \mu| [/mm] <  [mm] \epsilon) [/mm]  = 1 [mm] \quad\quad\gdw\quad\quad \forall\varepsilon>0 \limes_{n\rightarrow\infty} P(|\overline{X} [/mm] - [mm] \mu| \le \epsilon) [/mm]  = 1$

Beide Richtungen sind eigentlich relativ trivial.

Gruß,
Gono

Bezug
                
Bezug
Theorem von Bernoulli: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:32 Sa 08.02.2020
Autor: sancho1980


> Wie oben angemerkt: Vorne dran steht ja ein [mm]\forall \varepsilon>0[/mm]
> , d.h. es ist schlichtweg egal, ob da ein < oder ein [mm]\le[/mm]
> steht.

Stimmt, jetzt wo du das schreibst, ich nehme an, es dir geht darum, dass für stetige Zufallsvariablen gilt P(X > x) = P(X [mm] \ge [/mm] x) bzw.P(X < x) = P(X [mm] \le [/mm] x).
Irgendwie verwirrend, wenn dann trotzdem mal das eine und mal das andere Zeichen verwendet wird...

Bezug
                        
Bezug
Theorem von Bernoulli: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:36 Sa 08.02.2020
Autor: Gonozal_IX

Hiho,

> Stimmt, jetzt wo du das schreibst, ich nehme an, es dir
> geht darum, dass für stetige Zufallsvariablen gilt P(X >
> x) = P(X [mm]\ge[/mm] x) bzw.P(X < x) = P(X [mm]\le[/mm] x).

Nein, dein [mm] $\overline{X}$ [/mm] ist auch gar nicht stetig.
Das hängt damit zusammen, dass die Aussage für alle [mm] $\varepsilon>0$ [/mm] gilt.

Wie ich sagte: Zeige doch mal die von mir aufgeschriebene Äquivalenz formal exakt, d.h. das aus [mm] $P(\overline{X}_n \le \varepsilon) \to [/mm] 0$ für alle [mm] $\varepsilon [/mm] > 0$ folgt, dass auch [mm] $P(\overline{X}_n [/mm] < [mm] \varepsilon) \to [/mm] 0$ und umgekehrt!!

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]