www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieTopologie Blatt 2 Aufgabe 1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Topologie Blatt 2 Aufgabe 1
Topologie Blatt 2 Aufgabe 1 < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologie Blatt 2 Aufgabe 1: Aufgabenteil c)
Status: (Frage) beantwortet Status 
Datum: 13:10 Sa 23.10.2021
Autor: ireallydunnoanything

Aufgabe
Wir definieren eine Topologie auf der Menge S={0,1} mit den offenen Mengen [mm] \emptyset, [/mm] {1}, {0,1}. Fur einen beliebigen topologischen Raum (X,T), was sind die stetigen Funktionen X [mm] \to [/mm] S ?


Ich habe zu diesem Aufgabenteil leider keine Idee. Über einen (eventuell auch etwas umfangreicheren) Lösungsansatz wäre ich sehr dankbar.

Ich habe diese Frage in keinem anderen Forum oder auf anderen Webseiten getellt.


        
Bezug
Topologie Blatt 2 Aufgabe 1: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 So 24.10.2021
Autor: meili

Hallo ireallydunnoanything,

> Wir definieren eine Topologie auf der Menge S={0,1} mit den
> offenen Mengen [mm]\emptyset,[/mm] {1}, {0,1}. Fur einen beliebigen
> topologischen Raum (X,T), was sind die stetigen Funktionen
> X [mm]\to[/mm] S ?
>  Ich habe zu diesem Aufgabenteil leider keine Idee. Über

Als Idee für die Aufgabe:
Suche eine Definition oder Charakterisierung von stetigen Funktionen
zwischen topologischen Räumen, die sich auf offenen Mengen in
topologischen Räumen bezieht.
Damit lassen sich die stetigen Funktionen $X [mm] \to [/mm] S$ qualitativ beschreiben.

> einen (eventuell auch etwas umfangreicheren) Lösungsansatz
> wäre ich sehr dankbar.
>  
> Ich habe diese Frage in keinem anderen Forum oder auf
> anderen Webseiten getellt.
>  

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]