www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisTopologisch äquivalent
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Topologisch äquivalent
Topologisch äquivalent < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologisch äquivalent: Beweis
Status: (Frage) beantwortet Status 
Datum: 19:59 Mi 11.05.2005
Autor: KingMob

Hallo, ich habe hier eine Aussage zu beweisen, und ich komme einfach nicht voran. Kann mir bitte jemand weiterhelfen?

Es ist zu zeigen, dass Metriken d, d' auf einer Menge X topologisch äquivalent sind, genau dann wenn es zu jedem x [mm] \in [/mm] X und jedem [mm] \varepsilon [/mm] > 0 ein [mm] \delta [/mm] > 0 und ein [mm] \delta [/mm] ' > 0 gibt, so dass die beiden folgenden Aussagen gelten:
a) aus d'(x,y) < [mm] \delta [/mm] ' folgt d(x,y) < [mm] \varepsilon [/mm] , [mm] \forall [/mm]  y [mm] \in [/mm] X und
b) aus d(x,z) < [mm] \delta [/mm] folgt d'(x,z) < [mm] \varepsilon [/mm] , [mm] \forall [/mm] z [mm] \in [/mm] X

Vielen Dank im Voraus!

        
Bezug
Topologisch äquivalent: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Mi 11.05.2005
Autor: Stefan

Hallo!

Eine Topologie, die von einer Metrik induziert wird, ist die kleinste Topologie, die alle [mm] $\varepsilon$-Bälle [/mm] bezüglich dieser  Metrik enthält. Diese Bälle bilden eine Basis der Topologie. Mit anderen Worten: Eine Menge [mm] $M\subset [/mm] X$ ist genau dann offen, wenn es für alle $x [mm] \in [/mm] M$ ein [mm] $\varepsilon>0$ [/mm] gibt mit

[mm] $B_{\varepsilon}(x) \subset [/mm] M$,

wobei

[mm] $B_{\varepsilon}(x):=\{y \in X\, : \, d(x,y) < \varepsilon\}$. [/mm]

Um zu zeigen, dass zwei Topologien, die von zwei Metriken $d$ und $d'$ induziert werden, gleich sind, genügt es also zu zeigen, dass in jedem [mm] $\varepsilon$-Ball [/mm] bezüglich der Metrik $d$ ein geeigneter [mm] $\delta$-Ball [/mm] bezüglich der Metrik $d'$ enthalten ist und umgekehrt (denn dann ist ja jeder [mm] $\varepsilon$-Ball [/mm] bezüglich der einen Metrik die Vereinigung von Bällen bezüglich der anderen Metrik und damit bezüglich der anderen Topologie offen und umgekehrt).

Das kannst du mit den gegebenen Bedingungen leicht nachweisen.

Versuche es bitte mal. :-)

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]