www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikToto und Kombinatorik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Kombinatorik" - Toto und Kombinatorik
Toto und Kombinatorik < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Toto und Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Do 21.02.2013
Autor: herjon

Aufgabe
Hallo,

Ich habe eine Kombinatorik Frage zum Toto Fussballspiel mit 13 Spielpaarungen, wobei der Spielpaarungstipp folgende Bedeutung hat:
1 = Heimverein gewinnt,
2 = Auswärtsverein gewinnt,
0 = unentschieden

Ich spiele ein "System" mit 2 Dreierwege, 3 Zweierwege, und 8 Banken.
Dreierweg = ich kreuze alles drei Möglichkeiten an, weil der Ausgang völlig ungewiss ist,
Zweierweg = ich halte hier zwei Ergebnisse für möglich,
Bank = ich halte nur ein Ergebnis für möglich

Hier ein Beispiel:

Spiel 01: 1 (= eine Bank)
Spiel 02: 1, 2, 0 (= ein Dreierweg)
Spiel 03: 1, 2 (= ein Zweierweg)
Spiel 04: 2, 0
Spiel 05: 1
Spiel 06: 2
Spiel 07: 2
Spiel 08: 0
Spiel 09: 1, 2, 0
Spiel 10: 1, 0
Spiel 11: 0
Spiel 12: 1
Spiel 13: 0

Im Beispiel hätte ich dann ein Vollsystem mit 72 Tips (= 3*2*2*3*2).

Und jetzt komm ich endlich zur Frage :-)

Wenn ich jetzt aus den 72 möglichen Tips nur die Anzahl der Tipps haben möchte, die mindestens dreimal und maximal viermal einen 2'er haben, wie kann man das errechnen, ohne mir jede der 72 Tips einzelnd anzusehen? (Ein Totoprogramm zeigt mir hier als Ergebnis 50 Tips an)

Würde mich über Hilfe sehr freuen.

Liebe Grüsse

Horst

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Toto und Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Do 21.02.2013
Autor: Diophant

Hallo Horst,

vorneweg: dein Problem lässt sich nicht mit einer einfachen Formel lösen, denn die konkrete Berechnung hängt ja auch noch davon ab, wie viele 2er-Banken und vie viele Zweiwege mit der 2 enthalten sind.

Ich weiß jetzt nicht, wie fit du in Kombinatotik bist bzw. im Fußball-Toto. ;-) Sagt dir der Begriff Trefferbild etwas?

Falls ja: ich habe mal vor gut 20 Jahren ein solches Totoprogamm entwickelt. Da waren es noch 11 Spiele und das Betriebssystem hieß noch MS-DOS. Dieses Programm war im Prinzip dazu da. sog. Trefferbildsysteme zu erzeugen. Von daher weiß ich noch gut, wie kompliziert die auftretenden
Zählprobleme waren. Damals war ja Rechenleistung noch ein kostbares Gut und im Sinne schneller Algorithmen ist es bei solchen Auflistungen von Vorteil, wenn man von vorn herein die Anzahl kennt. Also der langen Rede kurzer Sinn: es wimmelt da nur so von Fallunterscheidungen. Möchtest du das wirklich allgemein durchdiskutieren oder reicht dir eine Rechnung für deinen obigen konreten Tipp aus?

Für diesen könntest du nämlich die Tatsache verwenden, dass die Forderung mindestens 3 auf jeden Fall erfüllt ist, da du drei 2er-Banken hast. Und ich gehe mal davon aus, dass die gesetzt sind? Jetzt musst du also in deinen Mehrwegen noch teilweise die 2er eliminieren. Wenn man das mit einem Dreiweg macht, verkleinert sich die Zahl der Tippreihen um 2/3, bei einem Zweiweg halbiert sie sich.

Ich kann allerdings das Ergebnis deines Programms nicht nachvollziehen. Ich komme auf 56 Tipps, aber vielleicht habe ich dich auch falsch verstanden?


Gruß, Diophant

Bezug
                
Bezug
Toto und Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Fr 22.02.2013
Autor: herjon

Hallo Diophant.

Lieben Dank für Deine Antwort.

Leider bin ich in der Kombinatorik überhaupt nicht fit, entdecke aber zunehmenst Interesse an Toto. (Der Begriff Trefferbild ist mir aber nicht bekannt.)

Bezüglich des Verständnisses ein kleines Beispiel anhand von 6 Tipps (aus den insgesamten 72 möglichen Tipps):
1112122011010 (<- Ok weil drei 2'er)
1112122010010 (<- Ok weil drei 2'er)
1110122011010 (<- fällt weg weil nur zwei 2'er)
1122122021010 (<- fällt weg weil fünf 2'er)
1122122020010 (<- fällt weg weil fünf 2'er)
1120122021010 (<- OK weil vier 2'er)

Als Freizeitprogrammierer (aber leider nicht Mathematiker) interessiert mich wie man mittels einer Formel die Anzahl errechnen kann ohne durch alle möglichen Vollsystemtipps durchloopen zu müssen. Angenommen einer käme auf die Idee ein sehr teueres Vollsystem spielen zu wollen (z.B. 11 Dreierwege) dann wären das 177.147 Tipps ... und hier durchloopen, bloss um die (3<=Anzahl<=4) 2'er pro Tipp zu zählen, ist sehr "unelegant". :-)

Kennst Du eine Formel dazu (anhand des aktuellen Beispiels)?

Liebe Grüsse

Horst


Bezug
                        
Bezug
Toto und Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Fr 22.02.2013
Autor: Diophant

Hallo Horst,

zunächst muss ich meinen obigen Beitrag insofern korrigieren, dass die 56 Möglichkeiten nicht stimmen, da du ja nur zwei 2er-Banken drin hast, da hatte ich mich verzählt.

Aber wie gesagt: mit Formeln kommt man hier nicht weit. Wenn in einem Restaurant a Aperitifs, b Vorspeisen, c Hauptspeisen, d Desserts und e Weine angeboten werden, dann gibt es - bis auf Geschmacksfragen - a*b*c*d*e Menüs, die man daraus zusammenstellen kann. Aber das hast du ja auch verwendet und kennst es.

Ich habe leider meine Unterlagen von damals nicht mehr, und den Sourcecode habe ich damals mitverkauft. Ich weiß nur noch, dass ich die Vorkommen der drei möglichen Banken, der drei möglichen Zweiwege sowie der Dreiwege zunächst gezählt habe, um dann eine relativ komplizierte Funktion aufzurufen, der ich diese Werte übergeben habe. Aber über das 'Innenleben' dieser Funktion weiß ich nichts mehr.

Im obigen Fall sind es doch zwei Banken mit einer 2, zwei Zweiwege in denen 2er vorkommen sowie zwei Dreiwege. Wenn wir die Banken stehen lassen, dann kann man nun

- beide Zweiwege einschränken (4 Zweier - 18 Möglichkeiten)
- beide Dreiwege einschränken (4 Zweier - 24 Möglichkeiten)
- einen Zweweg und einen Dreiweg einschränken (4 6weier -
- einen Zweiweg belassen, alles andere einschränken (3 Zweier - 4 Möglichkeiten)
- einen Dreiweg belassen, alles andere einschränken (3 Zweier -  6 Möglichkeiten)

Das macht jetzt summa summarum die 50 Möglichkeiten deines Programms. Aber sobald sich bspw. die Anzahl der 2er- Banken ändert, sieht deine Rechnung wieder ganz anders aus, das macht es eben zu einer etwas unübersichtlichen Angelegenheit.

PS: unter einem Trefferbild versteht man die Zusammenfassung sämtlicher Tipps, die eine vorher festgelegte Zahl an 1en, 0en und 2en enthalten. Wenn dieses Trefferbild dann tatsächlich kommt, hat man automatisch den höchsten Gewinnrang. Das interessante an diesen Trefferbildern war, dass nach der Wiedervereinigung aber noch zu Zeiten der 11er-Wette der Erwartungswert mindestens eines dieser Trefferbilder (5-4-2) eine Zeit lang positiv war. Das wusste fast niemand, und so ein System kann man nicht so einfach erzeugen, da man jede einzelne Tippreihe extra ausfüllen muss. Bei dem erwähnten Trefferbild waren dies damals knapp 8000 Tippreihen, also knapp 800 Totoscheine. Das war auch die Motivation hinter meiner Software...

Meine persönliche Meinung ist übrigens. dass die Erhöhung der zu tippenden Spiele auf 13 nur einen einzigen Zweck verfolgt hat: dadurch, dass es jetzt wesentlich mehr Trefferbilder gibt kann sich der statistisch zu belegende Heimvorteil im Fußball nicht mehr dahingehend auswirken, dass ein solcher positiver Erwartungswert zustande kommt.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]