www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenTrageseil einer Brücke
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Trageseil einer Brücke
Trageseil einer Brücke < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trageseil einer Brücke: Exp-Funktion
Status: (Frage) beantwortet Status 
Datum: 19:59 Sa 25.11.2006
Autor: Blaub33r3

Aufgabe
Hab hier noch eine Aufgabe dessen letzte Aufgabenstellung ich nicht verstehe:  Hab einen Funktionschar [mm] f_{t}(x)=x-k*e^{x} [/mm]
hab die komplette Analyse zwar durchgeführt aber

c) Vom Nullpunkt lässt sich an jede Kurve genau eine Tangente legen. Wo berührt diese Tangente die zugehörige Kurve?

Hm fänds super wenn ihr mir helfen würdet^^ *g*
gruss, b33r3

        
Bezug
Trageseil einer Brücke: Hinweise
Status: (Antwort) fertig Status 
Datum: 22:32 Sa 25.11.2006
Autor: Loddar

Hallo Blaub33r3!


Sei $b_$ die gesuchte Berührstelle von der Tangenten mit der Kurve von [mm] $f_k(x)$ [/mm] .

Die Tangente hat als Ursprungsgerade die Form $t(x) \ = \ m*x$ .

Dabei entspricht die Steigung $m_$ genau der Steigung (und damit der 1. Ableitung) der Funktion an der Stelle $x \ = \ b$ :

[mm] $m_k [/mm] \ = \ [mm] f_k'(b) [/mm] \ = \ [mm] 1-k*e^b$ [/mm]


Und an der Stelle $x \ = \ b$ müssen auch die Funktionswerte übereinstimmen:  $t(b) \ = \ [mm] f_k(b)$ [/mm]

[mm] $\gdw$ $\left(1-k*e^b\right)*b [/mm] \ = \ [mm] b-k*e^b$ [/mm]


Diese Gleichung nach $b \ = \ ...$ umstellen.


Gruß
Loddar


Bezug
                
Bezug
Trageseil einer Brücke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 So 26.11.2006
Autor: Blaub33r3

Hm, ich hab es nur halb verstanden leider...
Ich hab mir versucht am Plotter eine Funktion mit k=1 zeichnen zulassen
also [mm] f(x)=x-e^{x}.. [/mm]
aber ich komm einfach nicht auf die spezielle Tangentengleichung, obwohl ich weiss das der Berührpunkt(wie du ihn nanntest) b=1 ist! dann kommt bei mir y=m raus für die tangente. Hm was habe ich nicht bedacht?

Gruss, daniel

Bezug
                        
Bezug
Trageseil einer Brücke: Tangente
Status: (Antwort) fertig Status 
Datum: 12:06 So 26.11.2006
Autor: Loddar

Hallo Daniel!


> obwohl ich weiss das der Berührpunkt(wie du ihn nanntest) b=1 ist!

[ok] Richtig! Hast Du das auch rechnerisch ermittelt?


> dann kommt bei mir y=m raus für die tangente.

Nun setze den Wert $b \ = \ 1$ in unsere Formel für die Tangentensteigung (siehe auch oben) ein:

[mm] $m_k [/mm] \ = \ [mm] 1-k*e^b [/mm] \ = \ [mm] 1-k*e^1 [/mm] \ = \ 1-k*e$


Damit ergibt sich also für beliebiges $k_$ die Tangentengleichung:

[mm] $t_k(x) [/mm] \ = \ [mm] m_k*x [/mm] \ = \ (1-k*e)*x$


Gruß
Loddar


Bezug
                                
Bezug
Trageseil einer Brücke: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 So 26.11.2006
Autor: Blaub33r3

Ohman die Steigung hatte ich soweit auch 1-ke
ich musste das rechnisch lösen weil ich vergessen hab 1-ke wieder in t(x)=m*x einzusetzen...

Am Anfang hab ich mich die ganze Zeit gefragt ob die Tangen von links nach rechts oder umgekehrt verläuft, das hat mich einfach nur verwirrt..hätte ja genau auch anders rum auch sein können oder nicht?

gruss, daniel

Aber habs soweit gut verstanden,thx^^


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]