Transformation von Integralen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Schreibe das Flächenintegral [mm] \integral_{x²+y²+z²=1, |z| \le \bruch{1}{2}}^{} {\bruch{|z|}{ \wurzel{x²+y²}} dH²(x,y,z)} [/mm] als L² Integral mittels Parametrisierung durch sphärische Koordinaten. |
Ich soll also über den Teil der Einheitssphäre integrieren, für den z zwischen -1/2 und 1/2 liegt. In Polarkoordinaten müsste sich das dann doch auf den Winkel auswirken, oder? Aber wie kriege ich das Integral jetzt in Polarform? Und vor allem noch vom Hausdorff zum Lebesgue-Maß! Bitte helft mir, ich weiß nicht weiter!
|
|
|
|
Hallo madde_dong,
ich würde folgendermaßen vorgehen: parametrisiere zunächst die ganze einheitssphäre über sphärische koordinaten und überlege dann, wie sich die einschränkung auf $z$ auf den einen der winkel auswirkt, als beispiel kannst du dir ja zunächst mal den einheitskreis vorstellen.
Das Hausdorffsche Flächenelement solltest du dann eigentlich klassisch anhand der gramschen determinante bestimmen können. dann noch den integranden transformieren, ausrechnen , fertig!
Vg
Matthias
|
|
|
|
|
Hallo Matthias,
danke für deine Antwort!
Ich bin jetzt soweit, dass ich gesehen habe, dass der Integrand in sphärischen Koordinaten gerade [mm] cot(\theta) [/mm] sein müsste. Die Kugelbedingung ist dann ja einfach r²=1. Nur beim Winkel bin ich noch nicht ganz sicher. Da [mm] z=r*cos(\theta), [/mm] müsste ja [mm] \bruch{\pi}{3} \le \theta \le 2*\pi-\bruch{\pi}{3} [/mm] sein. Ist das soweit richtig?
Das Hausdorff-Maß bereitet mir allerdings noch Kopfzerbrechen: Ich weiß praktisch nichts darüber, außer, dass es wohl ein Vielfaches des Lebesgue-Maßes ist. Aber was hat das Ganze denn mit einer gramschen Determinante zu tun? Gram-Matrizen kenne ich wohl aus der linearen Algebra, aber nicht aus der Analysis... Wäre also super, wenn du mich da etwas aufklären könntest!
|
|
|
|
|
Hallo madde_dong,
so ganz tief drin bin ich in dem thema auch nicht mehr, also sieh es mir nach, dass ich dir nur ein paar grundsätzliche tips gebe:
wenn du die konventionen bei kugelkoordinaten verwendest wie bspw. wikipedia, stimmt deine bedingung an [mm] $\theta$ [/mm] nur fast, denn ich erhalte dort
$ [mm] \bruch{\pi}{3} \le \theta \le \pi-\bruch{\pi}{3}=2/3\cdot\pi [/mm] $
wenn ihr maße von gekrümmten flächen berechnen sollt, müsstet ihr aber eigentlich auch die gramsche determinante gelernt haben. Sie ist das standardmäßige mittel, um flächen von untermannigfaltigkeiten des [mm] $\IR^n$ [/mm] aber auch allgemeiner von riemannschen mannigfaltigkeiten zu bestimmen. Ansonsten surfe doch zu diesem thema ein wenig im netz.
VG
Matthias
|
|
|
|
|
Hallo,
tut mir leid, dass ich den kalten Kaffe nochmal aufwärmen muss. Ich habe mich weiter mit dieser Aufgabe beschäftigt, aber keine befriedigende Lösung gefunden. Ich bin nur soweit, dass die Transformation der Substitution bei eindimensionalen Integralen entspricht. Aber ich blicke immer noch nicht durch: wenn ich jetzt meine Variablen durch Kugelkoordinaten ersetze, wie verändert sich dann dxdydz? Und was ist diese Gramsche Determinante?
Sorry Leute, dass ich mich so dumm anstelle, aber ich bin dankbar für jede Hilfe!
|
|
|
|
|
Hallo madde_dong,
schau bspw. mal hier nach!
Dadurch wirst du die thematik wahrscheinlich noch nicht begreifen, aber du siehst zumindest, wie man ein flächenintegral berechnet.
VG
Matthias
|
|
|
|
|
Hallo Matthias,
vielen Dank für deinen Hinweis. Das mit der Determinante habe ich jetzt verstanden, auch wenn ich mich bei der Anwendung mit allgemeinen Transformationen noch etwas schwer tu...
Bei Kugelkoordinaten ist die Determinante also [mm] r²sin\theta. [/mm] Mein Integrand wird also zu [mm] r²cos\theta, [/mm] da sich der Kotangens mit dem Sinus kürzt.
Ich bin aber immer noch verunsichert: Ich habe nur ein zweidimensionales Maß. Heißt das nun, dass ich nur über 2 Variablen integriere? Aber über welche, über [mm] \theta [/mm] und r oder [mm] \theta [/mm] und [mm] \phi? [/mm] Außerdem: Was mache ich mit dem Hausdorff-Maß? Oder muss ich da nichts mehr transformieren? Was muss ich mir darunter überhaupt vorstellen?
|
|
|
|
|
Hallo madde_dong,
die radius-variable $r$ kannst du erstmal vergessen, da sie ja auf der sphäre konstant ist. Also integrierst du über die winkelvariablen.
Da die sphäre ein zweidimensionales geometrisches gebilde ist, ist es doch plausibel nur über zwei variablen zu integrieren, oder?
das hausdorff-maß ist zunächst mal ein theoretisches gebilde, das man in der praxis meist über parametrisierungen bzw. gramsche determinanten ausrechnen muß, genau wie das standard-flächenelement.
das hausdorffsche flächenelement transformiert man also anhand der gramschen determinante in das übliche lebesguesche volumenmaß.
VG
Matthias
|
|
|
|