Transformation von Winkeln < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:03 Di 25.10.2016 | Autor: | maurits |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
Ich bin ganz neu hier und habe bestimmt auch meine Frage im falschen Bereich gepostet, aber ich weiß nicht einmal um welches Teilgebiet der Mathematik es sich handelt oder ob die Frage eher in die Ingenieurswissenschaften gehört.
Ich habe ein kleines Video mit der Frage vorbereitet, weil ich das Problem so anschaulicher zeigen kann.
https://youtu.be/LYg0jz8rsBA
Hat irgendwer einen Hinweis wie ich das Problem angehen kann? Mein eigener Ansatz wäre die Winkel in Vektoren umzuformen, dann eine Koordinatentranfsormation vorzunehmen und dann die Vektoren wieder in Winkel umzuformen. Wäre das Möglich? Gibt es einen einfacheren Weg?
Ich bin dankbar für jede Hilfe.
Viele Grüße,
Maurits
|
|
|
|
Hallo!
Eine per Youtube gestellte Frage hatten wir hier wohl auch noch nicht...
Aber im Prinzip kannst du das so machen, wie du es selbst schreibst.
Erstmal zum Koordinatensystem: x zeigt nach Westen, y nach Süden, und z zum Zenit.
Sind Azimut [mm] (\alpha [/mm] ) und Höhe [mm] (\epsilon [/mm] , elevation) null, schaut die Kamera nach Süden, in y-Richtung, der Normalenvektor der Blickrichtung ist:
[mm] \vec{n}=\vektor{0\\1\\0}
[/mm]
Der erste Fall kann beschrieben werden, indem zunächst der Höhenwinkel durch Drehung um x eingestellt wird (Achse an der Kamera), und danach der Azimut durch Drehung um z (Achse an Platte).
Das beschreibt man durch Drehmatrizen. Dazu noch eine Gemeinheit: So, wie ich das beschrieben habe, geht die Drehung um die x-Achse im mathematisch positiven Sinn, die um die Z-Achse aber im negativen Sinn. (Mach mal so mit rechts: . Der Daumen ist die Achse, die anderen Finger zeigen die positive Richtung). Da der Azimut aber von Süden nach Westen angegeben wird, muß er negativ eingesetzt werden.
[mm] $\vec{n}_1=D_z*D_x*\vec{n} [/mm] = [mm] \vektor{ \cos(-\alpha) & -\sin(-\alpha) &0 \\ \sin(-\alpha) & \cos(-\alpha) & 0 \\ 0&0&1} [/mm] * [mm] \vektor{ 1&0&0 \\ 0 & \cos(\epsilon) & -\sin(\epsilon) \\ 0 & \sin(\epsilon) & \cos(\epsilon)}*\vec{n} [/mm] = [mm] \vektor{ \cos(-\alpha) & -\sin(-\alpha) &0 \\ \sin(-\alpha) & \cos(-\alpha) & 0 \\ 0&0&1} [/mm] * [mm] \vektor{ 0 \\ \cos(\epsilon) \\ \sin(\epsilon) } [/mm] = [mm] \vektor{-\sin(-\alpha)\cos(\epsilon) \\ \cos(-\alpha)\cos(\epsilon) \\sin(\epsilon)} =\vektor{\sin(\alpha)\cos(\epsilon) \\ \cos(\alpha)\cos(\epsilon) \\sin(\epsilon)}$
[/mm]
Für den zweiten Fall funtioniert es ähnlich: Es wird zuerst an der Kamera um die x-Achse um [mm] \psi [/mm] gedreht, dann aber um die y-Achse um [mm] \theta [/mm] . Hier aber drauf achten, daß die Rotationsmatrix um y andere Vorzeichen hat:
[mm] $\vec{n}_2=D_y*D_x*\vec{n} [/mm] = [mm] \vektor{ \cos(\theta) & 0& \sin(\theta) \\ 0&1&0\\ -\sin(\theta) & 0& \cos(\theta) & } [/mm] * [mm] \vektor{ 1&0&0 \\ 0 & \cos(\psi) & -\sin(\psi) \\ 0 & \sin(\psi) & \cos(\psi)}*\vec{n}= \vektor{0\\ \cos(\psi) \\ \sin(\psi) } =\vektor{\sin(\theta)\sin(\psi) \\ \cos(\psi) \\ \cos(\theta)\sin(\psi) }$
[/mm]
Und nun mußt du beide Ergenisse gleich setzen, und das dann auflösen.
Ich würde beispielsweise die erste Zeile durch die dritte dividieren, dann bekommst du [mm] \tan(\theta)=\frac{\sin(\alpha)}{\tan(\epsilon)} [/mm] und damit [mm] \theta. [/mm] Die Divisionen (Die, die da steht, und die während der Rechnung) sind natürlich nicht ganz problemlos, denn der Divisor könnte ja 0 sein. Denk mal drüber nach, was das bedeuten könnte!
Nochwas: Je nachdem, wie rum die Winkel von den Motoren verstanden werden, musst du das Vorzeichen nochmal umkehren. Und du musst natürlich Offsets so dauf rechnen, daß das System in der Ausgangsposition nach Süden zeigt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:33 Do 27.10.2016 | Autor: | maurits |
Ich habe nun herausgefunden, dass ich diesen Lösungsansatz aus technischen Gründen nicht verwenden kann. Trotzdem Danke für die Hilfe!
|
|
|
|
|
Hallo Maurits
Die Transformation der Winkelangaben von einem Koordinaten-
system zu einem anderen wäre mittels Matrizen machbar, wie
Event_Horizon berichtet hat. Das würde aber den ständigen
Einsatz eines Rechners zur Motorensteuerung erfordern.
Falls dies zu kompliziert ist, würde ich (für den praktischen
Zweck, die Sonne einen Tag lang im Fokus der Kamera zu
behalten) vorschlagen, die ganze Apparatur nicht auf einer
horizontal ausgerichteten Plattform, sondern äquatorial zu
montieren, also auf einer Fläche, die parallel zur Äquatorial-
ebene der Erde ausgerichtet ist.
Dann genügt (mit vermutlich ausreichender Genauigkeit)
auch ein einziger Motor, welcher den Rektaszensionswinkel
nachführt. Der für einen Tag kaum veränderliche Deklinations-
winkel wird einfach am Morgen vor dem Start des Tageslaufes
der (Video-) kamera fest eingestellt nach dem aktuellen
Sonnenstand.
LG , Al-Chw.
|
|
|
|