www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikTransformationssatz für Dichte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Transformationssatz für Dichte
Transformationssatz für Dichte < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationssatz für Dichte: Überprüfung, Hilfe
Status: (Frage) beantwortet Status 
Datum: 16:04 So 02.05.2021
Autor: Mathe1404

Ich habe die Dichtefunktion [mm] \frac{1}{\pi} [/mm] * [mm] \frac{1}{x*(1+ln(x)^2)} [/mm] * I(x >0)

Dabei bezeichnet I die charakteristische Funktion.

Nun soll ich eine Funktion g auf [mm] \mathbb{R} [/mm] finden, sodass für eine rechteckverteilte Zufallsvariable U [mm] \sim [/mm] U(0,1) gilt, dass g(U) gemäß f verteilt ist.

------------

Meine Idee und mein Ansatz waren, den Dichtetransformationssatz zu verwenden.  Meine Idee hierbei war, die Funktion g als

g(x) = [mm] e^{tan(\pi * x)} [/mm] zu setzen.

Stimmt das? Mein Problem ist hierbei nämlich, dass der tangens ja nicht auf ganz [mm] \mathbb{R} [/mm] definiert ist.  Was kann ich da machen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Transformationssatz für Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 So 02.05.2021
Autor: Gonozal_IX

Hiho,

> Meine Idee und mein Ansatz waren, den Dichtetransformationssatz zu verwenden.

Gute Idee, wenn wir damit durch sind, zeig ich dir mal einen anderen Ansatz ohne Dichtetransformation.
Da muss man nachher aber eine DGL lösen.

> Meine Idee hierbei war, die Funktion g als
>  
> g(x) = [mm]e^{tan(\pi * x)}[/mm] zu setzen.

Auf die komm ich auch.

> Stimmt das? Mein Problem ist hierbei nämlich, dass der
> tangens ja nicht auf ganz [mm]\mathbb{R}[/mm] definiert ist.  Was kann ich da machen?

Warum willst du da überhaupt was machen?
Der Definitionsbereich von $g$ ist doch gar nicht ganz [mm] $\IR$ [/mm] (auch wenn die Aufgabenstellung das behauptet) sondern du stopfst da $U$ rein.
U kommt jetzt aber aus $(0,1)$ und da ist dein [mm] $\tan(\pi [/mm] x)$ problemlos drauf definiert.
Das von dir angesprochene Problem tritt da also gar nicht auf…

Gruß,
Gono

Bezug
                
Bezug
Transformationssatz für Dichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 So 02.05.2021
Autor: Mathe1404

Erstmal vielen Dank :)

> Hiho,
>  
> > Meine Idee und mein Ansatz waren, den
> Dichtetransformationssatz zu verwenden.
> Gute Idee, wenn wir damit durch sind, zeig ich dir mal
> einen anderen Ansatz ohne Dichtetransformation.
>  Da muss man nachher aber eine DGL lösen.

Das klingt gut. Mal ein ganz anderer Ansatz :)

> > Meine Idee hierbei war, die Funktion g als
>  >  
> > g(x) = [mm]e^{tan(\pi * x)}[/mm] zu setzen.
>  Auf die komm ich auch.
>  
> > Stimmt das? Mein Problem ist hierbei nämlich, dass der
> > tangens ja nicht auf ganz [mm]\mathbb{R}[/mm] definiert ist.  Was
> kann ich da machen?
>  Warum willst du da überhaupt was machen?
>  Der Definitionsbereich von [mm]g[/mm] ist doch gar nicht ganz [mm]\IR[/mm]
> (auch wenn die Aufgabenstellung das behauptet) sondern du
> stopfst da [mm]U[/mm] rein.
>  U kommt jetzt aber aus [mm](0,1)[/mm] und da ist dein [mm]\tan(\pi x)[/mm]
> problemlos drauf definiert.
>  Das von dir angesprochene Problem tritt da also gar nicht
> auf…

Aber kriege ich dann nicht für 1/2 ein Problem? Der Tangens ist ja bei pi/2 nicht definiert. oder ich bin grad durcheinander?

> Gruß,
>  Gono


Bezug
                        
Bezug
Transformationssatz für Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 So 02.05.2021
Autor: Gonozal_IX

Hiho,

> Aber kriege ich dann nicht für 1/2 ein Problem? Der
> Tangens ist ja bei pi/2 nicht definiert. oder ich bin grad
> durcheinander?

nö du hast schon recht.
Ich komme mit meinem Ansatz aber auf $g(x) = [mm] e^{\tan(c + \pi \cdot{} x)} [/mm] $ wobei c eine Konstante abhängig von den Parametern ist.

Ich weiß jetzt nicht genau, wo sich das bei der Transformationsformel wiederfindet, bin mir aber recht sicher, dass man da auch problemlos "shiften" kann, also trotz Verschiebung zum selben Ergebnis kommt.

D.h. du wählst  $g(x) = [mm] e^{\tan(\pi \cdot{} x - \frac{\pi}{2})} [/mm]  = [mm] e^{\tan(\pi \cdot{} (x - \frac{1}{2}))} [/mm] $ ohne was am Endergebnis zu ändern und ohne ein Problem zu haben.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]