Transpnierte Determinante < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:05 Di 24.01.2006 | Autor: | stam |
Aufgabe | A ist eine sllgemeine quadratische n-dimensionale Matrix
Beweise, dass gilt: [mm]detA^T=detA[/mm] |
Hallo
ich weiß, dass man das mit der Definition einer Determinante beweisen kann, aber wie genau muss ich vorgehen? Wie funktioniert in diesem Zusammenhang das entwickeln einer Matrix nach Zeilen/Spalten?
Liebe Grüße
Stam
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:04 Mi 25.01.2006 | Autor: | djmatey |
Hallöchen,
es bezeichne sign das Signum einer Permutation [mm] \sigma, [/mm] dann gilt
[mm] sign(\sigma) [/mm] = [mm] sign(\sigma^{-1}). [/mm]
Dann gilt nach der Leibniz-Formel
det(A) =
[mm] \summe_{\sigma \in S_{n}}^{} sign(\sigma^{-1})*a_{1\sigma^{-1}(1)}* \ldots *a_{n\sigma^{-1}(n)} [/mm] =
[mm] \summe_{\sigma \in S_{n}}^{} sign(\sigma)*a_{\sigma(1)1}* \ldots *a_{\sigma(n)n} [/mm] =
[mm] \summe_{\sigma \in S_{n}}^{} sign(\sigma)*a_{1\sigma(1)}'* \ldots *a_{n\sigma(n)}' [/mm] =
[mm] det(A^{t})
[/mm]
,wobei A = [mm] (a_{ij}), A^{t} [/mm] = [mm] (a_{ji}') [/mm] mit [mm] a_{ij}' [/mm] = [mm] a_{ji}
[/mm]
Bei der ersten Gleichung wurde dabei benutzt, dass die Abbildung
[mm] S_{n} \to S_{n}, \sigma \mapsto \sigma^{-1}
[/mm]
bijektiv ist, d.h. dass mit [mm] \sigma [/mm] auch [mm] \sigma^{-1} [/mm] ganz [mm] S_{n} [/mm] durchläuft. Dabei ist natürlich n die Zeilen- bzw. Spaltenanzahl der Matrix.
Die Leibniz-Formel findest Du bestimmt irgendwo (Netz oder Bücher), falls sie Dir nicht geläufig ist - ist sehr bekannt!
Liebe Grüße,
Matthias.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:28 Fr 27.01.2006 | Autor: | stam |
Danke für die antwort djmatey,
habs nun verstanden!
|
|
|
|