www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Trigonometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Trigonometrie
Trigonometrie < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Mi 07.04.2010
Autor: katja123

Aufgabe
Von dem Dreieck ABC sind jeweils drei Größen gegeben. Berechne die fehlenden Größen.  Konstruiere zur Kontrolle der Rechnung.
a=4,5 cm    b=6cm     c=5cm

hallöchen
also ich habe jetzt einen ansatz:
weil ich ja keinen winkel habe muss ich es mit dem kosinussatz rechnen
[mm] ax^{2} =bx^{2}+cx^{2}-2bc\times [/mm] cos [mm] \alpha [/mm]
und dass dann nach alpha auslöse dann kommt da immer matherror also [mm] ax^{2}+2bc bx^{2}+cx^{2} [/mm]
und das geht irgendwie nicht !!:(
also bitte helft mirr
danke schon im Voraus

        
Bezug
Trigonometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Mi 07.04.2010
Autor: katja123

Aufgabe
Von dem Dreieck ABC sind jeweils drei Größen gegeben. Berechne die fehlenden Größen.  Konstruiere zur Kontrolle der Rechnung.
a=4,5 cm    b=6cm     c=5cm

hallöchen
also ich habe jetzt einen ansatz:
weil ich ja keinen winkel habe muss ich es mit dem kosinussatz rechnen
[mm] a^{2} =b^{2}+c^{2}-2bc\times [/mm] cos [mm] \alpha [/mm]
und dass dann nach alpha auslöse dann kommt da immer matherror also [mm] a^{2}+2bc [/mm] : [mm] ^{2}+c^{2}=cos/alpha [/mm]
und das geht irgendwie nicht !!:(
also bitte helft mirr
danke schon im Voraus

Bezug
                
Bezug
Trigonometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Mi 07.04.2010
Autor: Steffi21

Hallo, dein Ansatz ist korrekt, vermutlich hast du deine Gleichung falsch umgestellt (kann man nicht lesen)

[mm] cos(\alpha)=\bruch{a^{2}-b^{2}-c^{2}}{-2*b*c}=0,679...... [/mm]

Steffi


Bezug
        
Bezug
Trigonometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Mi 07.04.2010
Autor: M.Rex

Hallo

> Von dem Dreieck ABC sind jeweils drei Größen gegeben.
> Berechne die fehlenden Größen.  Konstruiere zur Kontrolle
> der Rechnung.
>  a=4,5 cm    b=6cm     c=5cm
>  hallöchen
> also ich habe jetzt einen ansatz:
>  weil ich ja keinen winkel habe muss ich es mit dem
> kosinussatz rechnen
> [mm]ax^{2} =bx^{2}+cx^{2}-2bc\times[/mm] cos [mm]\alpha[/mm]

Was ist das x da? In der Formel des []Kosinussatzes taucht doch kein x auf.

>  und dass dann nach alpha auslöse dann kommt da immer
> matherror also [mm]ax^{2}+2bc bx^{2}+cx^{2}[/mm]
>  und das geht
> irgendwie nicht !!:(

Du hast dich:

[mm] c^{2}=a^{2}+b^{2}-2ab\cos(\gamma) [/mm]
[mm] \gdw c^{2}-(a^{2}+b^{2})=-2ab\cos(\gamma) [/mm]
[mm] \gdw \bruch{c^{2}-(a^{2}+b^{2})}{-2ab}=\cos(\gamma) [/mm]
[mm] \gdw\bruch{c^{2}-a^{2}-b^{2}}{-2ab}=\cos(\gamma) [/mm]
[mm] \gdw\bruch{-a^{2}-b^{2}+c^{2}}{-2ab}=\cos(\gamma) [/mm]
[mm] \gdw\bruch{-(a^{2}+b^{2}-c^{2})}{-2ab}=\cos(\gamma) [/mm]
[mm] \gdw\bruch{a^{2}+b^{2}-c^{2}}{2ab}=\cos(\gamma) [/mm]

Die anderen Winkel funktionieren dann analog, für den 3 Winkel kann man auch die Innenwinkelsumme von 180° beim Dreieck ausnutzen.


>  danke schon im Voraus

Marius

Bezug
        
Bezug
Trigonometrie: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Mi 07.04.2010
Autor: Loddar

Hallo Katja!


Bitte vermeide in Zukunft derartige Doppelposts.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]