www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Trigonometrie4
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Trigonometrie4
Trigonometrie4 < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrie4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:13 Fr 10.02.2006
Autor: suzan

huhu zusammen ;-)

Im inneren eines beliebigen Dreiecks ist ein quadrat mit einer seitenlänge von 8cm eingezeichnet. die der grundseite des dreiecks anliegenden winkel betragen [mm] \alpha [/mm] =70° und [mm] \beta [/mm] = 50°.
Berechnen sie die fehlenden dreieckseiten a,b,c.

ok
also

zuerst muss ich [mm] \gamma [/mm] ausrechnen...

[mm] \gamma [/mm] = [mm] 180°-(\alpha [/mm] + [mm] \beta) [/mm]

[mm] \gamma [/mm] = 180°-(70°+50°)

[mm] \gamma [/mm] = 60°


richtig?

welche seite muss ich denn jetzt zuerst ausrechnen??

lg
suzan

        
Bezug
Trigonometrie4: Antwort
Status: (Antwort) fertig Status 
Datum: 10:25 Fr 10.02.2006
Autor: Infinite

Hallo,

also, ich denke, wenn du ein Quadrat innerhalb des Dreieckes hast, dann müssten rechts und links rechtwinklige Dreiecke sein. Hier hätte ich dann folgende Idee:

Unten sind ja die 8cm und zwei kleine fehlende Strecken. Diese bekommst du ja mit:

tan  [mm] \alpha [/mm] =  [mm] \bruch{Gegenkathete}{Ankathete} [/mm]

bzw.

tan  [mm] \beta [/mm] =  [mm] \bruch{Gegenkathete}{Ankathete} [/mm]

Nur noch umstellen um die Ankatheten auszurechnen.

Diese zwei Ergebnisse solltest du zu den 8cm hinzuaddieren und du hast die untere Seite. Jetzt mit Hilfe des Sinussatzes die restlichen Seiten ausrechnen.

[mm] \bruch{a}{sin \alpha} [/mm] =  [mm] \bruch{b}{sin \beta} [/mm] =  [mm] \bruch{c}{sin \gamma} [/mm]

Hoffe ich konnte dich auf den richtigen weg bringen...

Bezug
                
Bezug
Trigonometrie4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:31 Fr 10.02.2006
Autor: suzan

huhu infinite ;-)

ich versuch es mal :-)

also:

aber die gegenkathete ist doch nicht gegeben es sind ja nur die winkel und die seite vom quadrat (8cm)  wie kann ich denn da die ankathete ausrechnen?


lg
suzan

Bezug
                        
Bezug
Trigonometrie4: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 Fr 10.02.2006
Autor: Infinite

Hallo,

die Gegenkathete in dem rechtwinklingem Dreieck von [mm] \alpha [/mm] ist die Seite des Quadrates. Also muss für die untenliegende Ankathete gelten:

Ankathete =  [mm] \bruch{8cm}{tan (70 Grad)} [/mm]

Dasselbe machst du für die rechte Seite und addierst die beiden Ergebnisse mit den 8cm der unteren Seite des Quadrates zusammen. Schon hast du die Seite c.

Mach dir am Besten eine Zeichnung, so kannst du dann auch die Ergebnisse kontrollieren.

Gruss

Bezug
                                
Bezug
Trigonometrie4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:05 Fr 10.02.2006
Autor: suzan

achso...lol
ok

also

Ankathete= [mm] \bruch{8cm}{tan \alpha} [/mm]

Ankathete= [mm] \bruch{8cm}{2,7} [/mm]

Ankathete= 2,9cm


Ankathete= [mm] \bruch{8cm}{tan \beta} [/mm]

Ankathete= [mm] \bruch{8cm}{1,2} [/mm]

Ankathete= 6,6cm

c= 9,5cm


so dann habe ich jetzt gegeben: [mm] \alpha [/mm] = 70°, [mm] \beta [/mm] =50°, [mm] \gamma [/mm] = 60°
und c= 9,5cm

gesucht wird jetzt noch: a und b

berechnung von a

sin [mm] \alpha [/mm] = [mm] \bruch{a}{c} [/mm]

a= c*sin [mm] \alpha [/mm]

a= 9,5* sin 70°

a= 8,9cm


berechnung von b:

cos [mm] \alpha =\bruch{b}{c} [/mm]

b= c*cos [mm] \alpha [/mm]

b= 9,5* cos 70°

b= 3,2cm


richtig???

lg suzan

Bezug
                                        
Bezug
Trigonometrie4: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Fr 10.02.2006
Autor: Infinite

Hallo,

fast richtig, denn du musst die 2,9cm und 6,6cm mit den 8cm des Quadrates addieren, also c=17,5cm.

Ausserdem sagt der Sinussatz z.B.:

[mm] \bruch{c}{sin \gamma} [/mm] = [mm] \bruch{b}{sin \beta} [/mm]

dies bedeutet nach b umgestellt:

b =  [mm] \bruch{c}{sin \gamma} [/mm] * sin [mm] \beta [/mm]

Andere Seite genauso....und los geht's

Gruss

Bezug
                                                
Bezug
Trigonometrie4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:42 Di 14.02.2006
Autor: suzan

huhu zusammen,

ok also

[mm] \bruch{c}{sin \gamma}=\bruch{b}{sin \beta} [/mm]

b= [mm] \bruch{c}{sin \gamma}*sin \beta [/mm]

b= [mm] \bruch{17,5}{sin 60°}*sin [/mm] 50°

b= 15,5 cm


seite a:

[mm] \bruch{c}{sin \gamma}=\bruch{a}{sin \alpha} [/mm]

a= [mm] \bruch{c}{sin \gamma}*sin \alpha [/mm]

a= [mm] \bruch{17,5}{sin60°}*sin70° [/mm]

a=19cm


richtig???

Bezug
                                                        
Bezug
Trigonometrie4: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Di 14.02.2006
Autor: mathmetzsch

Hallo,

also deine Werte stimmen. Mein Tachenrechner bekommt dasselbe!

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]