www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungTrigonometrische Fkts. f'(x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Trigonometrische Fkts. f'(x)
Trigonometrische Fkts. f'(x) < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrische Fkts. f'(x): Ableiten
Status: (Frage) beantwortet Status 
Datum: 21:17 Di 16.05.2006
Autor: night

Aufgabe
f(x) = sin (x ) + tan ( x )
f(x) = sin (x ) * tan (x)
f(x) = [mm] 1+tan^2(x) [/mm]
f(x) = 4(cos(x))^-2
f(x) = 2/ tan(x)
f(x) = cos(x)/tan(x)

hi
sind die hier richtig?

f`(x) = cos (x) + [mm] 1/cos^2(x) [/mm]
f`(x) =  sin(x) * [mm] 1/cos^2(x) [/mm] + cos(x) * tan(x)
f`(x) = 1+ [mm] 1/cos^4(x) [/mm]
f`(x) = -4/3 ( cos(x))^-3 * - sin(x)
f`(x) = ???
f`(x) = cos (x) * [mm] 1/cos^2 [/mm] +sin(x) *tan(x)       [mm] /(tan(x))^2 [/mm]
wenn ja wie kann ich sie noch mehr zusammenfassen (bestimmte)

mfg Daniel
danke!

        
Bezug
Trigonometrische Fkts. f'(x): Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Di 16.05.2006
Autor: Doro

Bei den ersten beiden stimme ich ueberein.
bei der dritten: f(x) = 1 + tan²(x)
Bin ich der Meinung, dass das 1+ nicht stimmt, da in 1 kein x drin vorkommt und du lediglich von Termen mit x ableitest, solange dazwischen nur ein + ist.... und dann das tan²(x) nach Produktregel ableiten
also 1+tan²(x)*tan(x)+ 1 + tan²(x)*tan(x) = 2 + 2*(tan³(x))

Bei der nächsten hab ich mal 'n bißchen in der Formelsammlung geblättert.
f(x) = 4/cos²(x) muesste demnach f'(x) = 8*tan(x) *(1+tan²(x)) sein
(abl. von 1/cos²(x) = 2tan(x)*(1+tan(x))

Bei der 5. wäre ich für cos²(x)/2


6.: Bei der Quotientenregel ist der erste Term die Abl. des Zählers * Nenner und dann  - Zähler mal Alb. des Nenners und dann halt durch nenner²
Also [-sin(x)*tan(x) - 1/cos²(x) * cos ] : tan²(x) = [-sin(x)*tan(x) - 1/cos(x)] : tan²(x)

Ich hoffe das stimmt so...



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]