www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenTrigonometrische Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - Trigonometrische Gleichung
Trigonometrische Gleichung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Fr 18.05.2012
Autor: hase-hh

Aufgabe
An welchen Stellen nimmt die Funktion f(x) den Wert 10 an?

f(x) = [mm] 3*sin(\bruch{2 * \pi}{28}*x) [/mm] +12


Moin, Moin!

Ich suche also die Lösungen der Gleichung

f(x) = 10

[mm] 3*sin(\bruch{2 * \pi}{28}*x) [/mm] +12 = 10

[mm] sin(\bruch{2 * \pi}{28}*x) [/mm] = - [mm] \bruch{2}{3} [/mm]

Substitution:   z = [mm] \bruch{2 * \pi}{28}*x [/mm]


sin(z) = - [mm] \bruch{2}{3} [/mm]    | arcsin

z = -0,7297

Dieser Wert ist (leider) negativ.

Wie komme ich denn jetzt auf den ersten positiven Wert?

plus [mm] \pi [/mm] ?  


Danke für eure Hilfe!




        
Bezug
Trigonometrische Gleichung: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 19:38 Fr 18.05.2012
Autor: MathePower

Hallo hase-hh,

> An welchen Stellen nimmt die Funktion f(x) den Wert 10 an?
>  
> f(x) = [mm]3*sin(\bruch{28}{2 * \pi}*x)[/mm] +12
>  Moin, Moin!
>  
> Ich suche also die Lösungen der Gleichung
>
> f(x) = 10
>  
> [mm]3*sin(\bruch{28}{2 * \pi}*x)[/mm] +12 = 10
>  
> [mm]sin(\bruch{28}{2*\pi}*x)[/mm] = - [mm]\bruch{2}{3}[/mm]
>  
> Substitution:   z = [mm]\bruch{28}{2 * \pi}*x[/mm]
>  
>
> sin(z) = - [mm]\bruch{2}{3}[/mm]    | arcsin
>  
> z = -0,7297
>  
> Dieser Wert ist (leider) negativ.
>
> Wie komme ich denn jetzt auf den ersten positiven Wert?
>  
> plus [mm]\pi[/mm] ?  
>


Nein,plus [mm]2\pi[/mm].


>
> Danke für eure Hilfe!
>  


Gruss
MathePower

Bezug
                
Bezug
Trigonometrische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Fr 18.05.2012
Autor: hase-hh

Also...

z = -0,7297

[mm] z_1 [/mm] = -0,7297 + [mm] 2*\pi [/mm]

1. Lösung          2. Lösung
[mm] z_1 [/mm] = 5,5535  -----  [mm] z_2 [/mm] = [mm] \pi [/mm] - [mm] z_1 +2*\pi [/mm]

                   [mm] z_2 [/mm] = 3,8713


Resubstituieren

[mm] z_1 [/mm] = [mm] \bruch{2*\pi}{28}*x_1 [/mm]  -----  [mm] z_2 [/mm] = [mm] \bruch{2*\pi}{28}*x_2 [/mm]

5,5535 = [mm] \bruch{2*\pi}{28}*x_1 [/mm]     3,8713 = [mm] \bruch{2*\pi}{28}*x_2 [/mm]

[mm] x_1 [/mm] = 24,748                            [mm] x_2 [/mm] = 17,252


richtig?

Bezug
                        
Bezug
Trigonometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Fr 18.05.2012
Autor: MathePower

Hallo hase-hh,

> Also...
>
> z = -0,7297
>  
> [mm]z_1[/mm] = -0,7297 + [mm]2*\pi[/mm]
>  
> 1. Lösung          2. Lösung
>  [mm]z_1[/mm] = 5,5535  -----  [mm]z_2[/mm] = [mm]\pi[/mm] - [mm]z_1 +2*\pi[/mm]
>  
> [mm]z_2[/mm] = 3,8713
>  


[ok]

>
> Resubstituieren
>  
> [mm]z_1[/mm] = [mm]\bruch{2*\pi}{28}*x_1[/mm]  -----  [mm]z_2[/mm] =
> [mm]\bruch{2*\pi}{28}*x_2[/mm]
>  
> 5,5535 = [mm]\bruch{2*\pi}{28}*x_1[/mm]     3,8713 =
> [mm]\bruch{2*\pi}{28}*x_2[/mm]
>  


Du hast doch substituiert:

[mm]z=\bruch{28}{2\pi}x[/mm]


> [mm]x_1[/mm] = 24,748                            [mm]x_2[/mm] = 17,252
>  
>
> richtig?


Gruss
MathePower

Bezug
                                
Bezug
Trigonometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:21 Fr 18.05.2012
Autor: hase-hh


> Du hast doch substituiert:
>  
> [mm]z=\bruch{28}{2\pi}x[/mm]

Äh, die Substitution hätte lauten müssen... (s.o.)

z = [mm] \bruch{2*\pi}{28}*x [/mm]


Bezug
                
Bezug
Trigonometrische Gleichung: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 20:30 Fr 18.05.2012
Autor: Event_Horizon

Hallo!

Das war etwas voreilig!
Die Funktion sin(z) ist zwar [mm] 2\pi [/mm] -periodisch, aber es geht hier um den Schnittpunkt einer konstanten mit der sin-Funktionen, und es gibt derlei zwei  in einem [mm] 2\pi [/mm] -Intervall.


Die arcsin-Funktion liefert nur Winkel von [mm] -\pi/2 [/mm] bis [mm] +\pi/2 [/mm] zurück, und daher in diesem Fall den Wert -0,7. Dann kann man sich geometrisch überlegen, daß die nächste Stelle bei [mm] \pi/2+(\pi/2-(-0,7))=\pi-(-0,7)=\pi+0,7 [/mm] liegt:

[Dateianhang nicht öffentlich]




EDIT: Ich hab was lang gebraucht. Aber es hat sich mittlerweile ja geklärt, daß da noch ne weitere Lösung bei 3,8 existiert...

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Trigonometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:44 Fr 18.05.2012
Autor: hase-hh

Vielen Dank...!!  Dein Weg führt aber zur selben Lösung?!



Bezug
                        
Bezug
Trigonometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:02 Fr 18.05.2012
Autor: Event_Horizon

Hallo!

Meine Antwort bezog sich auf die erste Antwort von MathePower, in der er sagt, daß man einfach [mm] 2\pi [/mm] hinzuaddieren muß. Das ist zwar auch eine Lösung, aber nicht die, die du suchst. Aber hinterher schreibst du selbst was von 3,8, und das ist die erste positive lösung.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]