www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenTrigonometrische Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - Trigonometrische Gleichungen
Trigonometrische Gleichungen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 So 13.12.2009
Autor: zitrone

Hallo,

ich habe da so meine Probleme mit den trigonometrischen Gleichungen und wollte deshalb hier um Hilfe bitten.

Erst einmal würde ich gerne Wissen, welche allgemeinen Gesetze zu den trigonom. Gleichungen man wissen müsste.

Zweitens bin ich ein bisschen beim hoch 2 beim Sinus irritiert. Also: [mm] sin^2 [/mm] x . Was heißt das denn ?? Heißt es , dass das x quadriert wird??

Könnte mir da bitte jemand helfen?

lg zitrone

        
Bezug
Trigonometrische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 So 13.12.2009
Autor: steppenhahn

Hallo Zitrone,

> Hallo,
>  
> ich habe da so meine Probleme mit den trigonometrischen
> Gleichungen und wollte deshalb hier um Hilfe bitten.
>  
> Erst einmal würde ich gerne Wissen, welche allgemeinen
> Gesetze zu den trigonom. Gleichungen man wissen müsste.

Naja, zum Beispiel wichtig ist:

- [mm] $\tan(x) [/mm] = [mm] \frac{\sin(x)}{\cos(x)}$ [/mm]
- [mm] $\sin^{2}(x) [/mm] + [mm] \cos^{2}(x) [/mm] = 1$
- [mm] $\sin(2*x) [/mm] = [mm] 2*\sin(x)*\cos(x)$ [/mm]

Und eventuell noch die Additionstheoreme. Das steht aber üblicherweise im Tafelwerk. Du kannst dir grundsätzlich merken, dass es bei trigonometrischen Gleichung darauf ankommt, dass nach deinen Umformungen nur noch eine einzige Art von trigonometrischen Funktionen in der Gleichung (z.B. Sinus) vorhanden ist, sonst kommst du nicht weiter.

> Zweitens bin ich ein bisschen beim hoch 2 beim Sinus
> irritiert. Also: [mm]sin^2[/mm] x . Was heißt das denn ?? Heißt es
> , dass das x quadriert wird??

Per Definition ist:

[mm] $\sin^{2}(x) [/mm] := [mm] \Big[\sin(x)\Big]^{2}$, [/mm]

d.h. nicht das Argument x wird quadriert, sondern das Ergebnis von [mm] \sin(x). [/mm]

Grüße,
Stefan

Bezug
                
Bezug
Trigonometrische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 So 13.12.2009
Autor: zitrone

Hallo,

vielen Dank.

Hätte da aber noch eine Verständnisfrage:
Oft sehe ich ein l und ein k in den Texten der trigonometrischen Funkeionen. Ich  denke das l für die Periodenlänge steht,aber was soll k sein?

lg zitrone

Bezug
                        
Bezug
Trigonometrische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 So 13.12.2009
Autor: steppenhahn

Hallo zitrone,

so ohne weiteres wird dir diese Frage hier leider niemand beantworten koennen, weil wir nicht wissen, wo deine k's und l's in der Funktion stehen.
Du kannst dir aber merken:

$f(x) = [mm] a*\sin(x+b) [/mm] + c$

beschreibt eine Sinus-Kurve, die um b nach LINKS auf der x-Achse verschoben ist, um c nach oben auf der y-Achse.
Die Amplitude ist a.

Bei

$f(x) = [mm] \sin(d*x)$ [/mm]

handelt es sich um eine Sinus-Kurve, deren Periode nicht mehr [mm] 2\pi [/mm] ist, sondern [mm] \frac{2*\pi}{b}. [/mm]

Grüße,
Stefan

Bezug
                                
Bezug
Trigonometrische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 So 13.12.2009
Autor: zitrone

Guten Abend,

ach so. Ich denk mal, dass ich es soweit verstanden hab.
Nur noch eine letzte frage hab ich zu den trigonom. Gleichungen :):

würde ich den Tangens in einer Gleichung haben und diesen aber durch Sinus ersetzten will, könnte man das dann so machen:

[mm] tan(x)=\bruch{sin(x)}{cos(x)} [/mm]


[mm] \bruch{sin(x)}{cos(x)}= \bruch{sin(x)}{\bruch{1-sin(x)}{2}} [/mm]

lg zitrone

Bezug
                                        
Bezug
Trigonometrische Gleichungen: Korrektur
Status: (Antwort) fertig Status 
Datum: 19:27 So 13.12.2009
Autor: Loddar

Hallo zitrone!


> [mm]tan(x)=\bruch{sin(x)}{cos(x)}[/mm]

[ok]


> [mm]\bruch{sin(x)}{cos(x)}= \bruch{sin(x)}{\bruch{1-sin(x)}{2}}[/mm]

[notok] Wie kommst Du darauf?


Gruß
Loddar


Bezug
                                
Bezug
Trigonometrische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 So 13.12.2009
Autor: zitrone

Guten Abend,

ach so. Ich denk mal, dass ich es soweit verstanden hab.
Nur noch eine letzte frage hab ich zu den trigonom. Gleichungen :):

würde ich den Tangens in einer Gleichung haben und diesen aber durch Sinus ersetzten will, könnte man das dann so machen:

[mm] tan(x)=\bruch{sin(x)}{cos(x)} [/mm]


[mm] \bruch{sin(x)}{cos(x)}= \bruch{sin(x)}{\bruch{1-sin(x)}{2}} [/mm]

weil: [mm] cos^2x=\bruch{1-sin(x)}{2} [/mm]

lg zitrone

Bezug
                                        
Bezug
Trigonometrische Gleichungen: dieselbe Korrektur
Status: (Antwort) fertig Status 
Datum: 19:30 So 13.12.2009
Autor: Loddar

Hallo zitrone!


> weil: [mm]cos^2x=\bruch{1-sin(x)}{2}[/mm]

Auch hier: wie kommst Du darauf?

Zumal in Deinem obigen Ausdruck auch gar kein [mm] $\cos^{\red{2}}(x)$ [/mm] vorkommt.


Gruß
Loddar


Bezug
                                                
Bezug
Trigonometrische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 So 13.12.2009
Autor: zitrone

Guten Abend,


hmm... Also ich hab mir das wie folgt überlegt:

ich kann [mm] cos^2 [/mm] x als [mm] 1-sin^2 [/mm] x ausdrücken. Aber cosx kann ich dementsprechend nicht so ausdrücken. Aber da ich nur sinus haben will, muss ich cosx umformen, da es heißt:
[mm] \bruch{sin(x)}{cos(x)} [/mm]

da [mm] cos^2 x=1-sin^2 [/mm] x dachte ich mir, dass
[mm] cosx=\bruch{1-sin(x)}{2} [/mm]

(ich hab es mir mal etwas anschaulischer gemacht: da [mm] 5^2= [/mm] 24 ergeben und wenn man das wieder mit 5 dividiert, erhält man 5. so hab ich mir das auch mit [mm] cos^2 [/mm] x vorgestellt)

wie wäre denn dann die eigentliche lösung?

Hinzufügung: ne quatsch, 2 kanns ja irgendwie nicht sein...ist mein Ansatz komplett falsch??

lg zitrone

Bezug
                                                        
Bezug
Trigonometrische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 So 13.12.2009
Autor: leduart

Hallo zitrone
> Guten Abend,
>  
>
> hmm... Also ich hab mir das wie folgt überlegt:
>  
> ich kann [mm]cos^2[/mm] x als [mm]1-sin^2[/mm] x ausdrücken. Aber cosx kann
> ich dementsprechend nicht so ausdrücken. Aber da ich nur
> sinus haben will, muss ich cosx umformen, da es heißt:
>  [mm]\bruch{sin(x)}{cos(x)}[/mm]
>  
> da [mm]cos^2 x=1-sin^2[/mm] x dachte ich mir, dass

da hast u eigentlich nicht gedacht sondern irgendwie hoch 2 mit mal 2 verwechselt!

>  [mm]cosx=\bruch{1-sin(x)}{2}[/mm]
>  
> (ich hab es mir mal etwas anschaulischer gemacht: da [mm]5^2=[/mm]
> 24 ergeben und wenn man das wieder mit 5 dividiert, erhält
> man 5. so hab ich mir das auch mit [mm]cos^2[/mm] x vorgestellt)

Die Vorstellung ist schlimm!

> wie wäre denn dann die eigentliche lösung?
>  
> Hinzufügung: ne quatsch, 2 kanns ja irgendwie nicht
> sein...ist mein Ansatz komplett falsch??

ja, grausig falsch.
[mm] cos(x)=\wurzel{1-sin^2(x)} [/mm]
ist hier die einzige Möglichkeit.
Gruss leduart



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]