www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTürme von Hanoi
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Türme von Hanoi
Türme von Hanoi < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Türme von Hanoi: Wo ist der Fehler ?
Status: (Frage) beantwortet Status 
Datum: 17:24 Do 16.01.2014
Autor: pc_doctor

Hallo,

ich soll die inhomogene Rekursionsgleichung für Türme von Hanoi mit dem "Kochrezept" für inhomogene Gleichungen lösen. Es ist keine Rekursionsgleichung vorgegeben , wir sollen diese selber rausfinden , daher :

Mein Lösungsweg:

Die inhomogene Rekursionsgleichung ist:
f(n) = 2f(n-1) + 1

[mm] x_n [/mm] = f(n)
=>
[mm] x_n [/mm] = [mm] 2x_{n-1} [/mm] + 1
x = 2
Daraus folgt:

Allgemeiner Ansatz für den homogenen Teil also für 2f(n-1) ist:
c* [mm] 2^{n} [/mm] (homogener Teil)

Ansatz für die spezielle Lösung ( also für den inhomogenen Teil )

a*n + b
also
f(n) = an+b

an+b = 2(a(n-1)+b)+1
an+b = 2an - 2a + 2b +1
     = (2a+1)*n -2a +2b +1

a = (2a+1) => a = -1

b = -2a +2b +1 => b = 3

allg. Lösung der Ausgangsrekursionsgleichung:
f(n) = [mm] c*2^{n} [/mm] -n +3  ( weil wir allg. Lösung (homogen) + spezielle Lösung(inhomogen) addieren)

Es sind bei der Aufagbe keine Anker vorgegeben , also keine Randbedingungen. Es existiert aber f(1) = 1 , oder f(2) = 3 usw. Ich habe f(1) genommen , um c zu berechnen. Hier ist c [mm] \in \IR [/mm] !

Also:
f(1) = [mm] c*2^{1} [/mm] -1 +3
Also:
1 = [mm] c*2^{1} [/mm] -1 +3
c = [mm] \bruch{1}{2} [/mm]
Also : f(n) = [mm] \bruch{1}{2} *2^{n} [/mm] -n+3


Das kann aber nicht stimmen. Wo habe ich einen Fehler gemacht ?
Ich bitte um Korrektur.
EDIT: Ich gehe davon aus , dass der Ansatz bei der speziellen Lösung falsch ist , kann es aber nicht begründen.
Vielen Dank im Voraus.

        
Bezug
Türme von Hanoi: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Do 16.01.2014
Autor: MathePower

Hallo pc_doctor,

> Hallo,
>  
> ich soll die inhomogene Rekursionsgleichung für Türme von
> Hanoi mit dem "Kochrezept" für inhomogene Gleichungen
> lösen. Es ist keine Rekursionsgleichung vorgegeben , wir
> sollen diese selber rausfinden , daher :
>  
> Mein Lösungsweg:
>  
> Die inhomogene Rekursionsgleichung ist:
>  f(n) = 2f(n-1) + 1
>  
> [mm]x_n[/mm] = f(n)
>  =>
>  [mm]x_n[/mm] = [mm]2x_{n-1}[/mm] + 1
>  x = 2
>  Daraus folgt:
>  
> Allgemeiner Ansatz für den homogenen Teil also für
> 2f(n-1) ist:
>  c* [mm]2^{n}[/mm] (homogener Teil)
>  
> Ansatz für die spezielle Lösung ( also für den
> inhomogenen Teil )
>  
> a*n + b


Der Ansatz ist nicht richtig,
da der inhomogene Teil nur eine Konstante ist.

Demnach Ansatz für den inhomgenen Teil: [mm]f\left(n\right)=b[/mm]


>  also
>  f(n) = an+b
>  
> an+b = 2(a(n-1)+b)+1
>  an+b = 2an - 2a + 2b +1
>       = (2a+1)*n -2a +2b +1
>  
> a = (2a+1) => a = -1
>  
> b = -2a +2b +1 => b = 3
>  
> allg. Lösung der Ausgangsrekursionsgleichung:
>  f(n) = [mm]c*2^{n}[/mm] -n +3  ( weil wir allg. Lösung (homogen)
> + spezielle Lösung(inhomogen) addieren)
>  
> Es sind bei der Aufagbe keine Anker vorgegeben , also keine
> Randbedingungen. Es existiert aber f(1) = 1 , oder f(2) = 3
> usw. Ich habe f(1) genommen , um c zu berechnen. Hier ist c
> [mm]\in \IR[/mm] !
>  
> Also:
>  f(1) = [mm]c*2^{1}[/mm] -1 +3
>  Also:
>  1 = [mm]c*2^{1}[/mm] -1 +3
>  c = [mm]\bruch{1}{2}[/mm]
>  Also : f(n) = [mm]\bruch{1}{2} *2^{n}[/mm] -n+3
>  
>
> Das kann aber nicht stimmen. Wo habe ich einen Fehler
> gemacht ?
>  Ich bitte um Korrektur.
>  EDIT: Ich gehe davon aus , dass der Ansatz bei der
> speziellen Lösung falsch ist , kann es aber nicht
> begründen.
>  Vielen Dank im Voraus.


Gruss
MathePower

Bezug
                
Bezug
Türme von Hanoi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Do 16.01.2014
Autor: pc_doctor

Hallo ,

danke für die Antwort.

Das hatte ich mir schon gedacht.

Wenn f(n) = b ist , so ist:
b = 2f(n-1) + 1
bzw, da f(n)  = [mm] x^n [/mm] war
b = [mm] 2x^{n-1} [/mm] +1 oder ?

Und das x hatte ich ja schon berechnet , war x = 2. Jetzt einfach einsetzen , damit man b hat ?

Bezug
                        
Bezug
Türme von Hanoi: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Do 16.01.2014
Autor: MathePower

Hallo pc_doctor,

> Hallo ,
>  
> danke für die Antwort.
>  
> Das hatte ich mir schon gedacht.
>  
> Wenn f(n) = b ist , so ist:
>  b = 2f(n-1) + 1
>  bzw, da f(n)  = [mm]x^n[/mm] war
>  b = [mm]2x^{n-1}[/mm] +1 oder ?


Nein, es gilt eben auch: [mm]f}\left(n-1\right)=b[/mm]


>  Und das x hatte ich ja schon berechnet , war x = 2. Jetzt
> einfach einsetzen , damit man b hat ?


Gruss
MathePower

Bezug
                                
Bezug
Türme von Hanoi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Do 16.01.2014
Autor: pc_doctor

Hallo,

ich bin ein wenig verwirrt jetzt.

Wir hatten gesagt , es gelte:
f(n) = b (Ansatz spezielle Lösung)

Die Gleichung war f(n) = 2*f(n-1)+1
Wenn f(n-1) = b gilt :
b = 2*b + 1 , oder nicht ?


Dann gilt:
b = -1
also : spezielle Lösung + homogene Lösung

f(n) = [mm] c*2^{n} [/mm] -1
f(1) einsetzen :
1 = c [mm] *2^{1} [/mm] - 1
1 = 2c -1
c = 1
Also:
f(n) = [mm] 2^{n} [/mm] -1
Ich glaube das ist jetzt richtig , diese Funktion kommt mir bekannt vor. Ist das jetzt die geschlossene Formel der Ausgangsrekursion ?

Bezug
                                        
Bezug
Türme von Hanoi: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Do 16.01.2014
Autor: MathePower

Hallo pc_doctor,

> Hallo,
>  
> ich bin ein wenig verwirrt jetzt.
>  
> Wir hatten gesagt , es gelte:
>  f(n) = b (Ansatz spezielle Lösung)
>  
> Die Gleichung war f(n) = 2*f(n-1)+1
>  Wenn f(n-1) = b gilt :
>  b = 2*b + 1 , oder nicht ?
>  


Ganz genau.


> Dann gilt:
>  b = -1
>  also : spezielle Lösung + homogene Lösung
>  
> f(n) = [mm]c*2^{n}[/mm] -1
> f(1) einsetzen :
>  1 = c [mm]*2^{1}[/mm] - 1
>  1 = 2c -1
>  c = 1
>  Also:
>  f(n) = [mm]2^{n}[/mm] -1
>  Ich glaube das ist jetzt richtig , diese Funktion kommt
> mir bekannt vor. Ist das jetzt die geschlossene Formel der
> Ausgangsrekursion ?  


Ja.  [ok]


Gruss
MathePower

Bezug
                                                
Bezug
Türme von Hanoi: Zwischenfrage
Status: (Frage) beantwortet Status 
Datum: 18:09 Do 16.01.2014
Autor: pc_doctor

Hallo,

vielen Dank für die Antworten.

Ich habe kurz eine Zwischenfrage:
Wenn man sowas hier hat :

f(n) = 2f(n-2) + [mm] x^{2} [/mm] + 3

Ohne jetzt den homogenen Teil zu betrachten , was wäre der Ansatz für den inhomogenen Teil ? Jetzt haben wir ja eine quadratische Gleichung.

Bezug
                                                        
Bezug
Türme von Hanoi: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Do 16.01.2014
Autor: MathePower

Hallo pc_doctor,

> Hallo,
>  
> vielen Dank für die Antworten.
>  
> Ich habe kurz eine Zwischenfrage:
>  Wenn man sowas hier hat :
>  
> f(n) = 2f(n-2) + [mm]x^{2}[/mm] + 3
>  


Hier meinst Du wohl:

[mm]f(n) = 2f(n-2) + \blue{n}^{2} + 3[/mm]

Dann lautet der Ansatz für  den inhomogenen Teil:

[mm]a*n^{2}+b*n+c[/mm]


> Ohne jetzt den homogenen Teil zu betrachten , was wäre der
> Ansatz für den inhomogenen Teil ? Jetzt haben wir ja eine
> quadratische Gleichung.


Gruss
MathePower

Bezug
                                                                
Bezug
Türme von Hanoi: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 Do 16.01.2014
Autor: pc_doctor

Hallo,

ja natürlich, ich meinte [mm] n^{2}. [/mm]
Ich habe jetzt das Prinzip für den Ansatz der speziellen Lösung verstanden.

Vielen Dank für die nette Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]