www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungUmformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Umformung
Umformung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:32 Mo 09.01.2012
Autor: ionenangrif

Aufgabe
Hallo ich verstehe diese Umformung nicht:

[mm] \bruch{\bruch{1}{(cos(x))^2}}{- 1/2 (\wurzel{x-\bruch{pi}{2}})^3} [/mm]

zu

[mm] \bruch {-2\wurzel{x-\bruch{pi}{2}}}{(cos(x))^2} [/mm]


warum werden nenner und zähler vertauscht?

erfolgt hier unter umständen eine ableitung?

warum ist die potenz ³ beim ersten term im nenner dann im 2. term im zähler weg?

warum wird aus -0,5 auf einmal 2?

danke ich komm hier net weiter

        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Mo 09.01.2012
Autor: Cassipaya

Hallo Ioni

Wollte gerade mit Umformen beginnen, aber so kann das nicht stimmen. Fehlt da noch eine Klammer vielleicht? 1/(bla/bla) ansonsten versteh ich die Umformmung ebenfalls und schon im Ansatz nicht.

Grüsse

Cassy


Bezug
                
Bezug
Umformung: aufgabe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:12 Mo 09.01.2012
Autor: ionenangrif

ja da ist wirklich was faul...oder es wurde 1 schritt ausgelassen naja thx für die antwort

Bezug
        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Mo 09.01.2012
Autor: Cassipaya

Ah, jetzt versteh ich, man sieht den 2. Term im Nenner nicht. Da sollte stehen:

[mm]\bruch{\bruch{1}{(cos(x))^2}}{- 1/2 (\wurzel{x-\bruch{pi}{2}})^3}[/mm] zu [mm] \bruch {-2\wurzel{x-\bruch{pi}{2}}}{(cos(x))^2*(x-\bruch{pi}{2})^2} [/mm] oder?

denn dann geht es wie folgt:
Schreibe den langen Bruchstrich zu einem Geteiltdurch um, erinnere dich, was man dann mit dem 2. Bruch tun kann. und Schreibe die Wurzel im Nenner als rationaler Exponent (Bruch im Exponent)
Weil uns dieser Exponent im Nenner aber nicht gefällt erweitern wir mit einem geeigneten Bruch so, dass es die Wurzel auf dem Bruchstrich und das Quadrat im Nenner gibt.

Alles klar? Sonst nochmals fragen. Wir liefern ja nicht die fertigen Lösungen....


Bezug
                
Bezug
Umformung: erweitern
Status: (Frage) beantwortet Status 
Datum: 15:39 Mi 11.01.2012
Autor: ionenangrif

Aufgabe
ich bin jetzt soweit dass ich vom 1. Term im Nenner folgendes raushabe:

[mm] \bruch{-2}{\wurzel{(x-{\bruch{pi}{2})^3}}} [/mm]

nun weiß ich aber nicht, wie ich im aufgabenkontext sinnvoll erweitern soll...

Bezug
                        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Mi 11.01.2012
Autor: Steffi21

Hallo

zunächst den Doppelbruch auflösen

[mm] \bruch{\bruch{1}{cos^{2}(x)}}{-\bruch{1}{2}(\wurzel{x-\bruch{\pi}{2}})^{3}} [/mm]

[mm] =\bruch{1}{cos^{2}(x)*(-\bruch{1}{2})*(\wurzel{x-\bruch{\pi}{2}})^{3}} [/mm]

[mm] =\bruch{-2}{cos^{2}(x)*(\wurzel{x-\bruch{\pi}{2}})^{3}} [/mm]

zweiter Faktor im Nenner als Potenz schreiben

[mm] =\bruch{-2}{cos^{2}(x)*(x-\bruch{\pi}{2})^{\bruch{3}{2}}} [/mm]

jetzt mit [mm] (x-\bruch{\pi}{2})^{\bruch{1}{2}} [/mm] erweitern

[mm] =\bruch{-2*(x-\bruch{\pi}{2})^{\bruch{1}{2}}}{cos^{2}(x)*(x-\bruch{\pi}{2})^{\bruch{3}{2}}*(x-\bruch{\pi}{2})^{\bruch{1}{2}}} [/mm]

den Rest überlasse ich dir,

Steffi

Bezug
                                
Bezug
Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Mi 18.01.2012
Autor: ionenangrif

Aufgabe
Hallo

zunächst den Doppelbruch auflösen

$ [mm] \bruch{\bruch{1}{cos^{2}(x)}}{-\bruch{1}{2}(\wurzel{x-\bruch{\pi}{2}})^{3}} [/mm] $

$ [mm] =\bruch{1}{cos^{2}(x)\cdot{}(-\bruch{1}{2})\cdot{}(\wurzel{x-\bruch{\pi}{2}})^{3}} [/mm] $

$ [mm] =\bruch{-2}{cos^{2}(x)\cdot{}(\wurzel{x-\bruch{\pi}{2}})^{3}} [/mm] $

zweiter Faktor im Nenner als Potenz schreiben

$ [mm] =\bruch{-2}{cos^{2}(x)\cdot{}(x-\bruch{\pi}{2})^{\bruch{3}{2}}} [/mm] $

jetzt mit $ [mm] (x-\bruch{\pi}{2})^{\bruch{1}{2}} [/mm] $ erweitern

$ [mm] =\bruch{-2\cdot{}(x-\bruch{\pi}{2})^{\bruch{1}{2}}}{cos^{2}(x)\cdot{}(x-\bruch{\pi}{2})^{\bruch{3}{2}}\cdot{}(x-\bruch{\pi}{2})^{\bruch{1}{2}}} [/mm] $

ch habe nicht verstenden wie der Doppelbruch aufgelöst wurde :(

Bezug
                                        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Mi 18.01.2012
Autor: notinX

Hallo,

>  ch habe nicht verstenden wie der Doppelbruch aufgelöst
> wurde :(  

ganz allgemein gilt [mm] $\frac{\frac{a}{b}}{c}=\frac{a}{b}\cdot\frac{1}{c}=\frac{a}{bc}$ [/mm]
bzw.
[mm] $\frac{a}{\frac{b}{c}}=a:\frac{b}{c}=a\cdot\frac{c}{b}=\frac{ac}{b}$ [/mm]

Beides kombiniert ergibt:
[mm] $\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{ad}{bc}$ [/mm]

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]