www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenUmformung Summen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Umformung Summen
Umformung Summen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung Summen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Mi 04.03.2009
Autor: Vuffi-Raa

Hallo,

ich bin grad in meinem Skript beim Beweis des binomischen Satzes und kann folgende Umformung nicht nachvollziehen:

[mm]\summe_{k=0}^{n} {n \choose k} a^{k+1} b^{n-k} + \summe_{k=0}^{n} {n \choose k} a^{k} b^{n+1-k} = a^{n+1} + b^{n+1} + \summe_{k=0}^{n-1} {n \choose k} a^{k+1} b^{n-k} + \summe_{k=0}^{n-1} {n \choose k+1} a^{k+1} b^{n-k} [/mm]

Also das [mm]a^{n+1}[/mm] zieh ich einfach aus der ersten Summe, aber was da bei der Umformung der zweiten Summe passiert, versteh ich nicht.

(Ich muss dazu sagen, Umformungen von Summen bin ich generell noch nicht so fit.)

        
Bezug
Umformung Summen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Mi 04.03.2009
Autor: M.Rex

Hallo

Nimm dir mal die Summer erstmal einzeln vor:

Also:

[mm] \summe_{k=0}^{n}\vektor{n\\k}a^{k+1}b^{n-k} [/mm]

Nimm da mal den letzten, also den n-ten Summanden heraus

$$ [mm] \summe_{k=0}^{n}\vektor{n\\k}a^{k+1}b^{n-k} [/mm] $$
$$ [mm] =\underbrace{\vektor{n\\n}}_{=1}a^{n+1}*\underbrace{b^{n-n}}_{=1}+\summe_{k=0}^{n\red{-1}}\vektor{n\\k}a^{k+1}b^{n-k} [/mm] $$

Beim zweiten Summanden [mm] \summe_{k=0}^{n}\vektor{n\\k} a^{k} b^{n+1-k} [/mm] wird der erste Summand (k=0) herausgenommen und dann eine Indexverschiebung gemacht.
Also:

$$ [mm] \summe_{k=0}^{n}\vektor{n\\k}a^{k}b^{n+1-k} [/mm] $$
$$ [mm] =\summe^{n}_{\red{k=1}}\left[\vektor{n\\k}a^{k}b^{n+1-k}\right]+\underbrace{\vektor{n\\0}a^{0}}_{=1}*b^{(n+1-0)} [/mm] $$
$$ [mm] =b^{n+1}+\green{\summe_{k=0}^{n-1}}\left[\vektor{n\\\green{k-1}}a^{\green{k-1}}b^{n+1-\green{k-1}}\right] [/mm] $$
$$ [mm] =b^{n+1}+\summe^{n-1}_{k=0}\vektor{n\\k-1}a^{k-1}b^{n-k} [/mm] $$


Hilft das erstmal weiter?

Marius

Bezug
                
Bezug
Umformung Summen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Mi 04.03.2009
Autor: Vuffi-Raa

Ja danke, das hilft mir sehr. :-)

Eine Frage hätte ich dazu noch.
Wenn ich also so eine Index-Verschiebung um meinetwegen -1 mache, dann heißt das also bloß, dass die Grenzen um eins heruntersetze und statt dem Laufindex k ein k-1 einsetze?

Bezug
                        
Bezug
Umformung Summen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 Mi 04.03.2009
Autor: M.Rex

Hallo

> Ja danke, das hilft mir sehr. :-)

Sehr gut

>  
> Eine Frage hätte ich dazu noch.
>  Wenn ich also so eine Index-Verschiebung um meinetwegen -1
> mache, dann heißt das also bloß, dass die Grenzen um eins
> heruntersetze und statt dem Laufindex k ein k-1 einsetze?

Exakt so ist es gemeint

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]