www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenUmformung Summenzeichen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Umformung Summenzeichen
Umformung Summenzeichen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung Summenzeichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:05 Di 10.04.2012
Autor: iparkeri

Hi,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wollte eigentlich nur wissen, ob man das so umformen kann.

Gegeben habe ich:

$ [mm] \bruch{1}{N^2} \summe_{i=1}^N \summe_{j=1}^N H(\varepsilon [/mm] $ - $ [mm] \parallel \vec{x}_i [/mm] $ - $ [mm] \vec{x}_j \parallel) [/mm] $

, wobei H die Heaviside-Funktion ist.
(der Vorfaktor soll in Folgendem immer so gewählt werden, dass der gesamte Term = 1 ist, wenn gilt [mm] $H(\varepsilon [/mm] $ - $ [mm] \parallel \vec{x}_i [/mm] $ - $ [mm] \vec{x}_j \parallel) [/mm] =1$ für alle i,j)

Für i [mm] \not= [/mm] j müsste  daraus doch:

$ [mm] \bruch{1}{N(N-1)} \summe_{i=1}^{N} \summe_{j=1}^N H(\varepsilon [/mm] $ - $ [mm] \parallel \vec{x}_i [/mm] $ - $ [mm] \vec{x}_j \parallel) [/mm] $

werden.
das kann man umformen zu:

$ [mm] \bruch{2}{N (N-1)} \summe_{i=1}^{N-1} \summe_{j=i+1}^N H(\varepsilon [/mm] $ - $ [mm] \parallel \vec{x}_i [/mm] $ - $ [mm] \vec{x}_j \parallel) [/mm] $

, oder?

Falls man für j = i+1, j = [mm] i+\ell [/mm] setzen möchte, müsste doch  daraus

$ [mm] \bruch{2}{(N+1-\ell) (N-\ell)} \summe_{i=1}^{N-\ell} \summe_{j=i+\ell}^N H(\varepsilon [/mm] $ - $ [mm] \parallel \vec{x}_i [/mm] $ - $ [mm] \vec{x}_j \parallel) [/mm] $

werden.
und das wiederum müsste doch für $w= [mm] \ell$: [/mm]

$ [mm] \bruch{2}{(N+1-w) (N-w)} \summe_{n=w}^{N-1} \summe_{k=1}^{N-n} H(\varepsilon [/mm] $ - $ [mm] \parallel \vec{x}_k [/mm] $ - $ [mm] \vec{x}_{k+n} \parallel) [/mm] $

entsprechen, oder?

Gruß iparkeri

        
Bezug
Umformung Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Mi 11.04.2012
Autor: steppenhahn

Hallo,



> Gegeben habe ich:
>  
> [mm]\bruch{1}{N^2} \summe_{i=1}^N \summe_{j=1}^N H(\varepsilon[/mm]
> - [mm]\parallel \vec{x}_i[/mm] - [mm]\vec{x}_j \parallel)[/mm]
>  
> , wobei H die Heaviside-Funktion ist.
>   (der Vorfaktor soll in Folgendem immer so gewählt
> werden, dass der gesamte Term = 1 ist, wenn gilt
> [mm]H(\varepsilon[/mm] - [mm]\parallel \vec{x}_i[/mm] - [mm]\vec{x}_j \parallel) =1[/mm]
> für alle i,j)



> Für i [mm]\not=[/mm] j müsste  daraus doch:
>  
> [mm]\bruch{1}{N(N-1)} \summe_{i=1}^{N} \summe_{j=1}^N H(\varepsilon[/mm]
> - [mm]\parallel \vec{x}_i[/mm] - [mm]\vec{x}_j \parallel)[/mm]
>  
> werden.

[ok]. Das "$i [mm] \not= [/mm] j$" solltest du aber auch bei den Summen mit hinschreiben!


>  das kann man umformen zu:
>  
> [mm]\bruch{2}{N (N-1)} \summe_{i=1}^{N-1} \summe_{j=i+1}^N H(\varepsilon[/mm]
> - [mm]\parallel \vec{x}_i[/mm] - [mm]\vec{x}_j \parallel)[/mm]
>  
> , oder?

[ok] Genau. Das geht aber nur, weil der Term [mm] $H(\varepsilon [/mm] - [mm] ||x_i [/mm] - [mm] x_j||)$ [/mm] symmetrisch in i und j ist.


Ab jetzt gehe ich davon aus, dass anstelle von H(...) einfach "1" in der Summe steht, weil ich nicht weiss, was konkret hinter der Aufgabe verborgen ist:


> Falls man für j = i+1, j = [mm]i+\ell[/mm] setzen möchte, müsste
> doch  daraus
>  
> [mm]\bruch{2}{(N+1-\ell) (N-\ell)} \summe_{i=1}^{N-\ell} \summe_{j=i+\ell}^N H(\varepsilon[/mm]
> - [mm]\parallel \vec{x}_i[/mm] - [mm]\vec{x}_j \parallel)[/mm]
>  
> werden.

[ok]



>  und das wiederum müsste doch für [mm]w= \ell[/mm]:
>  
> [mm]\bruch{2}{(N+1-w) (N-w)} \summe_{n=w}^{N-1} \summe_{k=1}^{N-n} H(\varepsilon[/mm]
> - [mm]\parallel \vec{x}_k[/mm] - [mm]\vec{x}_{k+n} \parallel)[/mm]
>  
> entsprechen, oder?


[ok] genau.


Grüße,
Stefan

Bezug
                
Bezug
Umformung Summenzeichen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:07 Do 12.04.2012
Autor: iparkeri

super, vielen dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]