www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesUmformung bei Brüchen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis-Sonstiges" - Umformung bei Brüchen
Umformung bei Brüchen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung bei Brüchen: Idee
Status: (Frage) beantwortet Status 
Datum: 14:54 Mo 06.04.2015
Autor: canyakan95

Aufgabe
Rechnung = [mm] \bruch{5+(n+1)}{10^n+1} [/mm] * [mm] \bruch{10^n}{5+n} [/mm]
[mm] =\bruch{1}{10} [/mm] * [mm] \bruch{6+n}{5+n} [/mm]

hallo
kann einer mir die umformung bitte erklären bin höchstens auf [mm] \bruch{10n^n+60n}{10n^{n+1} + 50^{n+1}} [/mm] gekommen.
aber weiter bin ich net gekommen.

mfg

        
Bezug
Umformung bei Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Mo 06.04.2015
Autor: Marcel

Hallo,

> Rechnung = [mm]\bruch{5+(n+1)}{10^n+1}[/mm] * [mm]\bruch{10^n}{5+n}[/mm]
>  [mm]=\bruch{1}{10}[/mm] * [mm]\bruch{6+n}{5+n}[/mm]

dort soll sicher [mm] $10^{n+1}$ [/mm] anstatt [mm] $10^n+1$ [/mm] stehen! (Setze Exponenten in
geschweifte Klammern!)

>  hallo
>  kann einer mir die umformung bitte erklären

Ja!

> bin
> höchstens auf [mm]\bruch{10n^n+60n}{10n^{n+1} + 50^{n+1}}[/mm]
> gekommen.

??

Es ist

    [mm]\bruch{5+(n+1)}{10^{n+1}}*\bruch{10^n}{5+n}=\frac{(5+1+n)*10^n}{(5+n)*10^{n+1}}=\frac{10^n*(5+1+n)}{10^{n+1}*(5+n)}=\frac{10^n}{10^{n+1}}*\frac{6+n}{5+n}[/mm]

Warum ist nun [mm] $10^n/10^{n+1}=1/10$? [/mm]

Gruß,
  Marcel

Bezug
                
Bezug
Umformung bei Brüchen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Mo 06.04.2015
Autor: canyakan95

Habe das dann verstanden.
Dann ist [mm] 10^n/10^n+1 [/mm] = [mm] 10^n-(n+1)= [/mm] 10^-1= 1/10
Danke
Mfg

Bezug
                        
Bezug
Umformung bei Brüchen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:23 Mo 06.04.2015
Autor: Marcel

Hallo,

> Habe das dann verstanden.
>  Dann ist [mm]10^n/10^n+1[/mm] = [mm]10^n-(n+1)=[/mm] 10^-1= 1/10

setze, wie gesagt, geschweifte Klammern um Exponenten. Du meinst

    [mm] $10^n/10^{n+1}=10^{n-(n+1)}=10^{-1}=1/10$ [/mm]

[ok]

Es geht auch so:

    [mm] $\frac{10^n}{10^{n+1}}=\frac{10^n}{10^n*10^1}=\frac{1}{10^1}=\frac{1}{10}$ [/mm]

oder so:

    [mm] $\frac{10^n}{10^{n+1}}=\frac{1}{\frac{10^{n+1}}{10^n}}=\frac{1}{10^{(n+1)-n}}=\frac{1}{10}$ [/mm]

>  Danke

Gerne!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]