www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenUmformungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Rationale Funktionen" - Umformungen
Umformungen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Sa 24.02.2007
Autor: Leni-chan

Aufgabe
Zeigen Sie, dass die Fkt. [mm] f_{4}(x)=\bruch{(x-1)^2(x+4)}{(x+4)(x+2)} [/mm] durch die Gleichung [mm] y=f_{4}(x)=x-4+\bruch{9}{x+2} [/mm] beschrieben werden kann.

Ich komme hier einfach nicht weiter. Ich gehe von der 1. Fkt. aus und versuche diese Umzuformen. Dann komme ich gerade soweit, dass ich (x+4) kürzen kann und dann noch [mm] f(x)=\bruch{(x-1)^2}{x+2} [/mm] habe.
Aber ich weiß einfach nicht, wie ich dann weiter machen soll. Eine Hilfe wäre hier wirklich nicht schlecht und vielleicht auch generell ein Tipp, wie ich hier in Zukunft bei solchen Aufgaben die Lösung finde.
Danke schon mal.

LG Leni-chan

        
Bezug
Umformungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Sa 24.02.2007
Autor: Bastiane

Hallo Leni-chan!

> Zeigen Sie, dass die Fkt.
> [mm]f_{4}(x)=\bruch{(x-1)^2(x+4)}{(x+4)(x+2)}[/mm] durch die
> Gleichung [mm]y=f_{4}(x)=x-4+\bruch{9}{x+2}[/mm] beschrieben werden
> kann.
>  Ich komme hier einfach nicht weiter. Ich gehe von der 1.
> Fkt. aus und versuche diese Umzuformen. Dann komme ich
> gerade soweit, dass ich (x+4) kürzen kann und dann noch
> [mm]f(x)=\bruch{(x-1)^2}{x+2}[/mm] habe.
> Aber ich weiß einfach nicht, wie ich dann weiter machen
> soll. Eine Hilfe wäre hier wirklich nicht schlecht und
> vielleicht auch generell ein Tipp, wie ich hier in Zukunft
> bei solchen Aufgaben die Lösung finde.

Keine Ahnung, ob es einfacher geht, aber eine Sache, die immer funktionieren müsste, ist Polynomdivision. Multipliziere dazu Zähler und Nenner aus und mache dann Polynomdivision. Du hast dann:

[mm] (x^3+2x^2-7x+4):(x^2+6x+8) [/mm]

Da erhältst du dann x-4 plus einen Restterm. Der Restterm ist: 9x+36, also musst du diesen Teil auch noch durch [mm] (x^2+6x+8) [/mm] teilen. Wenn du das etwas anders schreibst, kannst du es so kürzen, dass das rauskommt, was du brauchst: [mm] \frac{9x+36}{x^2+6x+8}=\frac{9(x+4)}{(x+4)(x+2)}=\frac{9}{x+2}. [/mm]

Und ich sehe gerade, dass du auch nach dem Kürzen von (x+4), wie du es hier gemacht hast, einfach noch Polynomdivision machen kannst. Das dürfte wohl einfacher sein, aber für den allgemeinen Fall, wenn du vorher nichts kürzen kannst, kannst du es so machen, wie oben beschrieben. :-)

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]