Umformungsproblem, BITTE HELFT < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
HI
In der Vorlesung haben wir eine Aufgabe gerechnet (Integralöberechnung) während diereser Aufgabe hat der Professor folgende Umformung gemacht :
[mm] \bruch{x^{3}}{n^{3}}\summe_{k=1}^{n}(k-1)^{2}=\bruch{x^{3}}{n^{3}}\bruch{(n-1)n(2n-1)}{6}
[/mm]
Meine Frage wäre nun, wie kommt er da drauf ? (Mag sein das die Frage blöd ist, aber ich komm nciht drauf).
Könnte mir ews vieleicht jemand vorrechnen oder erlären? So das ich es auf [mm] \bruch{x^{4}}{n^{4}}\summe_{k=1}^{n}(k-1)^{3}
[/mm]
anwenden kann?
Wäre echt ne große Hilfe!!
Vielen Dank im Vorraus ,
Spider
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:50 So 27.01.2008 | Autor: | abakus |
Mal ohne Summenzeichen und vorangestellten Faktor: Es geht darum, dass [mm] 0^2+1^2+2^2+...+(n-1)^2=\bruch{(n-1)n(2n-1)}{6} [/mm] sein soll.
Test für n=1: [mm] 0^2=\bruch{(1-1)1(2*1-1)}{6} [/mm] wahr
Test für n=2: [mm] 0^2+1^2=\bruch{(2-1)2(2*2-1)}{6} [/mm] wahr
Test für n=3: [mm] 0^2+1^2+2^2=\bruch{(3-1)3(2*3-1)}{6} [/mm] wahr
Es handelt sich einfach um eine Summenformel für die Quadrate aufeinanderfolgender natürlicher Zahlen. Man könnte sie mit vollständiger Induktion beweisen.
In Formelsammlungen geht die Summe meist von 1 bis [mm] n^2 [/mm] und sieht deshalb etwas anders aus. Da es hier nur bis [mm] (n-1)^2 [/mm] geht, muss jedes n der sonst üblichen "Standardformel" durch n-1 ersetzt werden.
|
|
|
|