www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenen"Umgekehrte Abstandsaufgabe"
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - "Umgekehrte Abstandsaufgabe"
"Umgekehrte Abstandsaufgabe" < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"Umgekehrte Abstandsaufgabe": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Mi 28.03.2007
Autor: Hanz

Aufgabe:

Gegeben ist: g: [mm] \vec{x}=\vektor{2\\ 3\\-1}+r\vektor{6 \\ 2\\3} [/mm] mit dem Punkt P(14/7/5), der auf g liegt.
Gesucht sind zwei Punkte Q1 und Q2, welche den Abstand d=14 von P haben und auf g liegen.


Das ist die einzige Art aufgabe, welche ich von der Analytischen Geometrie nicht hinbekommen, weil ich auf keinen vernünftigen Ansatz bisher beim lernen gekommen bin.
Bin sehr dankbar für Hilfe

        
Bezug
"Umgekehrte Abstandsaufgabe": Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Mi 28.03.2007
Autor: Mary15


> Aufgabe:
>  
> Gegeben ist: g: [mm]\vec{x}=\vektor{2\\ 3\\-1}+r\vektor{6 \\ 2\\3}[/mm]
> mit dem Punkt P(14/7/5), der auf g liegt.
>  Gesucht sind zwei Punkte Q1 und Q2, welche den Abstand
> d=14 von P haben und auf g liegen.
>  
>
> Das ist die einzige Art aufgabe, welche ich von der
> Analytischen Geometrie nicht hinbekommen, weil ich auf
> keinen vernünftigen Ansatz bisher beim lernen gekommen
> bin.
>  Bin sehr dankbar für Hilfe

Hi,
versuche mal mit der Formel für Abstand zwischen zwei Punkte. Punkt P (14; 7; 5) und Punkt K [mm] \in [/mm] g (2+6r; 3+2r; -1+3r)

|PK| = 14 = [mm] \wurzel{(14-(2+6r))^2+ (7-(3+2r)^2+(5-(-1+3r))^2} [/mm]
Nach Umformen kriegst du eine quadratische Gleichung.
Kommst du weiter allein?

Bezug
                
Bezug
"Umgekehrte Abstandsaufgabe": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Do 29.03.2007
Autor: Hanz

Muss ich also jetzt
14 = [mm] \wurzel{(14-(2+6r))^2+ (7-(3+2r)^2+(5-(-1+3r))^2} [/mm] um formen?

Also als erstes ( )² nehmen, um die Wurzel aufzulösen, dann binomische Formeln anwenden und mit pq-formel nach r auflösen?

Mfg. A.

Bezug
                        
Bezug
"Umgekehrte Abstandsaufgabe": Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Do 29.03.2007
Autor: Mary15


> Muss ich also jetzt
>  14 = [mm]\wurzel{(14-(2+6r))^2+ (7-(3+2r)^2+(5-(-1+3r))^2}[/mm] um
> formen?
>  
> Also als erstes ( )² nehmen, um die Wurzel aufzulösen, dann
> binomische Formeln anwenden und mit pq-formel nach r
> auflösen?
>  
> Mfg. A.

Genau so!


Bezug
        
Bezug
"Umgekehrte Abstandsaufgabe": Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Do 29.03.2007
Autor: Zwerglein

Hi, Hanz,

> Aufgabe:
>  
> Gegeben ist: g: [mm]\vec{x}=\vektor{2\\ 3\\-1}+r\vektor{6 \\ 2\\3}[/mm]
> mit dem Punkt P(14/7/5), der auf g liegt.
>  Gesucht sind zwei Punkte Q1 und Q2, welche den Abstand
> d=14 von P haben und auf g liegen.

Mein Vorschlag geht glaub' ich etwas leichter:
(1) Du rechnest erst mal aus, wie lang der gegebene Richtungsvektor der Geraden ist.
Mein Ergebnis: 7
Der gewünschte Abstand ist (Zufall?) genau doppelt so groß; daher:
(2) zählst Du zum Punkt P das Doppelte des Richtungsvektors dazu [mm] (Q_{1}) [/mm] bzw. ziehst das Doppelte des Richtungsvektors ab [mm] (Q_{2}) [/mm]

Begründung: Da P auf der Geraden liegt, wirst Du, wenn Du Vielfache des Richtungsvektors addierst oder subtrahierst, immer Punkte der Geraden kriegen.
Wenn Du das Doppelte eines 7 LE langen Vektors addierst/subtrahierst, wird der neue Punkt genau 14 LE vom Ausgangspunkt entfernt sein.

Alles klar?

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]