www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesUmkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis-Sonstiges" - Umkehrfunktion
Umkehrfunktion < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:02 Do 08.01.2015
Autor: Aladdin

Aufgabe
Es sei $ x = [mm] e^{arcsin (y)} [/mm] $ Man berechne die Ableitung von y als Funktion von x.

Hey,
ich habe mal ne Frage, die Umkehrfunktion von der e-funktion ist ja ln.

Um meine Aufgabe zu berechnen muss ich ja als erstes die Funktion nach y auflösen.

wenn ich nun mal ln machen würde,hätte ich ja $ ln(x) = arcsin (y) $  oder?

nun würde ich nicht wissen was ich machen sollte.

Vertauschen: $ ln(y) = arcsin (x) $?

Die Ableitung von arcsin(x)ist: [mm] \bruch{1}{\wurzel{1-x^2}} [/mm]

ich weiß nur nicht wie ich die Puzzleteile zusammenfügen soll.

LG



        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Do 08.01.2015
Autor: fred97


> Es sei [mm]x = e^{arcsin (y)}[/mm] Man berechne die Ableitung von y
> als Funktion von x.
>  Hey,
>  ich habe mal ne Frage, die Umkehrfunktion von der
> e-funktion ist ja ln.
>  
> Um meine Aufgabe zu berechnen muss ich ja als erstes die
> Funktion nach y auflösen.
>  
> wenn ich nun mal ln machen würde,hätte ich ja [mm]ln(x) = arcsin (y)[/mm]
>  oder?

Ja


>  
> nun würde ich nicht wissen was ich machen sollte.
>  
> Vertauschen: [mm]ln(y) = arcsin (x) [/mm]?

Unsinn !


>  
> Die Ableitung von arcsin(x)ist: [mm]\bruch{1}{\wurzel{1-x^2}}[/mm]
>
> ich weiß nur nicht wie ich die Puzzleteile zusammenfügen
> soll.
>  
> LG
>  
>  


Aus [mm]ln(x) = arcsin (y)[/mm]  folgt

   [mm] $y=\sin(\ln(x))$ [/mm]

FRED

Bezug
                
Bezug
Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Do 08.01.2015
Autor: Aladdin

Danke für die Antwort.

wenn ich nun $ [mm] y=\sin(\ln(x)) [/mm] $ ableiten würde, hätte ich $ [mm] \bruch{cosln(x)}{x} [/mm] $, wäre das automatisch auch mein Ergebnis?

und noch eine Frage, wie kommt man von $ ln(x) = arcsin (y) $ nach $ [mm] y=\sin(\ln(x)) [/mm] $?

könntest du mir das bitte sagen.

LG



Bezug
                        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Do 08.01.2015
Autor: fred97


> Danke für die Antwort.
>  
> wenn ich nun [mm]y=\sin(\ln(x))[/mm] ableiten würde, hätte ich
> [mm]\bruch{cosln(x)}{x} [/mm], wäre das automatisch auch mein
> Ergebnis?

Nein, fahrradmatisch ! Klammern nicht vergessen:

[mm]\bruch{cos(ln(x))}{x} [/mm].


>  
> und noch eine Frage, wie kommt man von [mm]ln(x) = arcsin (y)[/mm]
> nach [mm]y=\sin(\ln(x)) [/mm]?
>  
> könntest du mir das bitte sagen.

Vielleicht sagst Du mir, welche Zusammenhang zwischen [mm] \sin [/mm] und [mm] \arcsin [/mm] besteht ?

FRED

>  
> LG
>  
>  


Bezug
                                
Bezug
Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 Do 08.01.2015
Autor: Aladdin

ich glaube ich habs.

$ ln(x) = arcsin (y) $ wenn ich es nun mal sinus nehmen würde hätte ich.

$ sin(ln(x)) = y $

Danke... :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]