Umkehrfunktion < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo!
Meine Aufgabe lautet ich soll den Definitionsbereich für sin x und für cos x jeweils so einschränken, dass sie umkehrbar sind und soll sie dann auch noch zeichen :( ich verstehe davon leider aber nicht viel :s hoffe mir kann jemand helfen...
|
|
|
|
Hallo!
> Meine Aufgabe lautet ich soll den Definitionsbereich für
> sin x und für cos x jeweils so einschränken, dass sie
> umkehrbar sind und soll sie dann auch noch zeichen :( ich
> verstehe davon leider aber nicht viel :s hoffe mir kann
> jemand helfen...
Naja, wann ist denn eine Funktion umkehrbar? Oder warum ist z. B. die Funktion [mm] f(x)=x^2 [/mm] nicht umkehrbar? Das ist der Fall, weil du für unterschiedliche x-Werte denselben y-Wert hast. Z.B. ist f(3)=9 und f(-3)=9. Wenn du das nun umkehren würdest, dann hättest du für 9 kein eindeutiges Bild, nämlich einmal 3 und einmal -3 - welches solltest du da nehmen? (Mathematisch sagt man, die Funktion ist nicht injektiv!) Und was macht man mit [mm] f(x)=x^2 [/mm] um es umkehren zu können? Man nimmt z. B. nur die positiven x-Werte. Denn für alle [mm] $x,y\ge [/mm] 0$ gilt: für [mm] x\not=y [/mm] ist [mm] f(x)\not=f(y). [/mm] Also kann man sie umkehren.
Und das gleiche machen wir nun mit [mm] $\sin [/mm] x$ und [mm] $\cos [/mm] x$. Probierst du das nun mal? Ein Tipp noch: es hat damit zu tun, wo die Funktion monoton steigend bzw. monoton fallend ist.
Und zum Zeichnen: Probier's doch mal mit Funkyplot.
Viele Grüße
Bastiane
|
|
|
|
|
Ich danke dir erstmal für deine aufmerksamkeit! :) aber ich verstehe leider nicht was du meinst?! wie muss ich denn meinen Definitionsbereich wählen und warum? wäe nett wenn du mir das etwas näher erläutern könntest :S
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:36 Mo 03.04.2006 | Autor: | Blacky |
[mm] sin_o:[-\bruch{\pi}{2};\bruch{\pi}{2}] \to[-1;1], [/mm] x [mm] \mapsto [/mm] sin(x)
[mm] cos_o:[0;\pi]\to[-1;1], [/mm] x [mm] \mapsto [/mm] cos(x)
So, du lädst dir am besten mal Funkyplot runter, wie es Bastiane gesagt hat. Dann lässt du dir sin(x) und cos(x) zeichnen und guckst dir die Intervalle an, die ich angegeben habe. Du wirst sehen das sin(x) in dem Intervall streng monoton steigend ist und cos(x) streng monoton fallend. Also wird jedem y Wert nur genau ein x Wert zugeordnet, was die Bedingung für Umkehrbarkeit ist. Man könnte auch noch beliebige andere Intervalle nehmen, die diese Bedingung erfüllen aber die beiden angegebenen sind die geläufigen. Wenn du das nicht verstehst solltest du dich mal über Bijektivität informieren :)
mfg blacky
|
|
|
|