Umkehrfunktion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:07 Mi 12.12.2007 | Autor: | oxy |
Guten Abend,
das Problem ist, dass ich den Bruch nicht anständig umformen kann. :(
Gegeben ist eine Funktion f:y=f(x) = [mm] \bruch{2-x}{x-1}. [/mm]
Davon soll ich nun die Umkehrfunktion bilden.
Systematisch ist es mir klar:
1. nach x auflösen
2. x und y vertauschen
Aber nun zur Umformung, meine Idee ist die, den Bruch zu erweitern und somit das x aus dem Nenner zu eleminieren. Probiert hab ich es mit (2-x) und einmal mit (x-1), allerdings ohne anständiges Ergebnis.
Gibt es eine Regel oder einen Ansatz für solche eine Umformung?
Gruß oxY
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:22 Mi 12.12.2007 | Autor: | SLe |
y = [mm] \bruch{2-x}{x-1}
[/mm]
y(x-1) = 2-x
yx - y = 2-x
yx +x = 2+y
x(y+1)= 2+y
x= [mm] \bruch{2+y}{1+y}
[/mm]
Also ist die Umkehrfunktion:
u(x) = [mm] \bruch{2+x}{1+x}
[/mm]
|
|
|
|