www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauUmkehrfunktion von tangens
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maschinenbau" - Umkehrfunktion von tangens
Umkehrfunktion von tangens < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion von tangens: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 So 01.11.2009
Autor: hotsauce

Hi Leute,

wir sind gerade bei Technischer Mechanik und haben aus zwei Teilkräften, die von einem Angriffspunkt aus gehen die Resultierende berechnet.

Danach wurde der Winkel der Resultierenden berechnet und da benuzte der Prof den arc tan.

Kann mir einer erklären, wann man die Umkehrfunktion der Winkelfunktion zu benutzen hat?, denn ich würde statt arc tan, einfach mit tan rechnen

Die Teilkräfte sind im 1. Quadranten, kp, ob das vllt erwähnenswert sei.

danke

        
Bezug
Umkehrfunktion von tangens: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 So 01.11.2009
Autor: leduart

Hallo
Wenn du in einem rechtwinkligen Dreieck a,b,c einen Winkel z. Bsp [mm] \alpha [/mm] kennst und b kannst du mit [mm] tan\alpha=a/b a=b*tan\alpha [/mm] den Winkel ausrechnen.
umgekehrt, wenn du das Seitenverhaltnis kennst, willst du [mm] \alpha [/mm] wissen. dann gilt [mm] arctan(a/b)=\alpha. [/mm]
Von deiner Kraft kennst du doch die x und die y Komponente, wenn du jetzt den Winkel [mm] \alpha [/mm] zur x-Achse haben willst ist das [mm] arctan(F_y/F_x) [/mm]
esgilt einfach [mm] tan\alpha= F_y/F_x [/mm]
[mm] arctan(tan\alpha)=arctan(F_y/F_x)=\alpha [/mm]
denn der arctan als umkehrfkt von tan sagt genau :
[mm] arctan(tan\alpha)=\alpha [/mm]

(Umkehrfkt sagt einfach, man macht etwas rückgängig, was die fkt gemacht hat. Das einfachste Beispiel Quadrat ist die Umkehrfkt zur Wurzel, Wurzel ist die Umkehrfkt zum Quadrat.
[mm] (\wurzel{a})^2=a [/mm] oder [mm] \wurzel{a^2}=a [/mm]
klarer, sonst frag noch mal.
Es lohnt sich auch zu experimentieren. zeichne nen Winkel, miss 2 Seiten in dem Dreieck ab, bilde das Verhaältnis, nimm arctan davon. du hast den Winkel, nimm davon wieder den tan und du hast das Verhältnis zurück.
Gruss leduart

Bezug
                
Bezug
Umkehrfunktion von tangens: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 So 01.11.2009
Autor: hotsauce

ok,

habe zwei seiten. dadurch, dass mir durch x und y der kraft das verhältnis bekannt ist, benutze ich hier, den arc tan!, so weit verstanden.

aber genauso gut kann ich doch den normalen tan benutzen, weil er ja auch sagt tan(alpha)=y/x

checke das iwie nicht so ganz

Bezug
                        
Bezug
Umkehrfunktion von tangens: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Mo 02.11.2009
Autor: M.Rex

Hallo

Im Rechtwinkligen Dreieck gilt:

[mm] \tan(\alpha)=\bruch{\text{Gegenkathete}}{\text{Ankathete}} [/mm]

Wenn du jetzt aber den Winkel [mm] \alpha [/mm] ermitteln willst, musst du den Tangens "wegbekommen", das geht mit der Umkehrfunktion, also hier dem Arctan.


Also:

[mm] \tan(\alpha)=\bruch{\text{Gegenkathete}}{\text{Ankathete}} [/mm]
[mm] \gdw \arctan(\tan(\alpha))=\left(\bruch{\text{Gegenkathete}}{\text{Ankathete}}\right) [/mm]
[mm] \gdw \alpha=\left(\bruch{\text{Gegenkathete}}{\text{Ankathete}}\right) [/mm]


Vergleiche das mal mit:

[mm] e^{x}=y [/mm]
[mm] \gdw \ln\left(e^{x}\right)=\ln(y) [/mm]
[mm] \gdw e^{x}=\ln(y) [/mm]

[mm] x^{5}=\bruch{a}{b}+c [/mm]
[mm] \gdw x=\wurzel[5]{\bruch{a}{b}+c} [/mm]

Ist es dir jetzt klarer geworden?

Marius

Bezug
                                
Bezug
Umkehrfunktion von tangens: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Mo 02.11.2009
Autor: hotsauce

jou, alles klar danke schön ;-)... habs gecheckt übrigens :-)

Bezug
                        
Bezug
Umkehrfunktion von tangens: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Mo 02.11.2009
Autor: leduart

Hallo
Wie kriegst du denn den Winkel raus, wenn ich dir sage y/x=2/3?
vielleicht ist deine Schwierigkeit ja nur, dass auf dem TR
nicht arctan steht sondern [mm] tan^{-1} [/mm] das ist aber nur eine andere Bezeichnung für arctan.
Dasselbe gilt für [mm] arcsin=sin^{-1} [/mm] usw.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]