www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeUmkehrfunktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Umkehrfunktionen
Umkehrfunktionen < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Sa 06.10.2007
Autor: Kampfkruemel

Aufgabe
Untersuchen Sie, ob die Funktion f umkehrbar ist, und bestimmen Sie gegebenenfalls den Term der Umkehrufnktion f*.

a) f(x)=2x+1      D(f) = [mm] \IR [/mm]

Hallo zusammen,

woran kann man erkennen, ob eine Funktion umkehrbar ist? Und wie bilde ich eine dazugehörige Umkehrfunktion?

Vielen Dank und Gruß
Sarah

        
Bezug
Umkehrfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Sa 06.10.2007
Autor: rainerS

Hallo Sarah!

> Untersuchen Sie, ob die Funktion f umkehrbar ist, und
> bestimmen Sie gegebenenfalls den Term der Umkehrufnktion
> f*.
>  
> a) f(x)=2x+1      D(f) = [mm]\IR[/mm]
>  Hallo zusammen,
>  
> woran kann man erkennen, ob eine Funktion umkehrbar ist?
> Und wie bilde ich eine dazugehörige Umkehrfunktion?

Das geht beides in einem Rutsch ;-)

Du versuchst die Gleichung [mm]y=f(x)[/mm] nach x aufzulösen, also x als Funktion von y darzustellen:

[mm]y=2x+1\quad|-1[/mm]
[mm]y-1 = 2x\quad |:2[/mm]
[mm]\bruch{1}{2} (y-1) = x[/mm] [ok]

Wenn das klappt, hast du die Umkehrfunktion.

Damit das funktioniert, darf es zu jedem y nur ein x geben.

Gegenbeispiel: [mm]g(x)=x^2+1[/mm]. Da ist [mm]g(1)=g(-1)=1[/mm]. Daher ist g(x) nicht umkehrbar auf [mm]\IR[/mm].

Anschaulich entspricht der Umkehrfunktion die Spiegelung an der Geraden x=y.

Viele Grüße
   Rainer

Bezug
                
Bezug
Umkehrfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Sa 06.10.2007
Autor: Kampfkruemel

Aufgabe
Untersuchen Sie, ob die Funktion f umkehrbar ist, und
bestimmen Sie gegebenenfalls den Term der Umkehrufnktion
f*.

b) f(x) = [mm] \bruch{x}{3} [/mm]      
      y = [mm] \bruch{x}{3} [/mm] -2    |+2
    y+2 = [mm] \bruch{x}{3} |:\bruch{1}{3} [/mm]
   [mm] \bruch{1}{3} [/mm] (y+2) = x            -> umkehrbar


c) f(x) = 1-x       D(f)= [mm] \IR [/mm]
   y = 1-x        |+x -y
  x = 1-y

d) f(x) = [mm] \bruch{x-3}{5} [/mm]

Danke rainerS!

Könnte das mal bitte jemand kontrollieren? Danke.

b) f(x) = [mm] \bruch{x}{3} [/mm]      
      y = [mm] \bruch{x}{3} [/mm] -2    |+2
    y+2 = [mm] \bruch{x}{3} |:\bruch{1}{3} [/mm]
   [mm] \bruch{1}{3} [/mm] (y+2) = x            -> umkehrbar

c) f(x) = 1-x       D(f)= [mm] \IR [/mm]
   y = 1-x        |+x -y
  x = 1-y                             -> umkehrbar


Bei d weiss ich nicht wie ich mit dem Bruch umgehen soll?!

Gruß
Sarah


Bezug
                        
Bezug
Umkehrfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 Sa 06.10.2007
Autor: Steffi21

Hallo,

ich hatte mir ehemals angewöhnt, erst die Variablen zu tauschen , dann nach y umstellen:

b) [mm] y=\bruch{x}{3}-2 [/mm] tauschen [mm] x=\bruch{y}{3}-2, [/mm] ergibt [mm] x+2=\bruch{y}{3}, [/mm] jetzt kommt dein Fehler, rechne mal 3, y=3x+6

c) y=-x+1, noch Variablen tauschen

d) [mm] y=\bruch{x-3}{5} [/mm] tauschen [mm] x=\bruch{y-3}{5} [/mm] mal 5 ergibt 5x=y-3, jetzt sollte es kein Problem sein, y= ...

Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]