www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenUmparametrisierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Umparametrisierung
Umparametrisierung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umparametrisierung: Problem mit der Konstante
Status: (Frage) für Interessierte Status 
Datum: 13:32 Sa 28.01.2006
Autor: Mathe_Alex

Aufgabe
Sei [mm] $\gamma [/mm] : [mm] [a,b]\to \IR^{n}$ [/mm] eine Abbildung.
Zeigen Sie: [mm] $L(\gamma) \ge \| \gamma(a)-\gamma(b) \|$. [/mm] Gleichheit haben wir genau dann, wenn [mm] $\gamma$ [/mm] aus dem Weg [mm] $\pi: [/mm] [0,1] [mm] \to \IR^{n}$ $\pi(t)=t\gamma(a)+(1-t)\gamma(b)$ [/mm] ensteht durch monotone Umparametrisierung mit einem [mm] $\beta$ [/mm] das $0$ und $1$ als Werte annimmt.

Einen schönen guten Tag allerseits,

Die Ungleichheit bei dieser Aufgabe ist kein Problem mit Dreiecksungleichung un Definition der Bogenlänge. Die Rückrichtung vom  [mm] \gdw [/mm] ist mir auch gelungen.
Die Bogenänge ist invariant unter Umparametrisierung (Satz im Skript), also rechne ich den Weg von [mm] \pi [/mm] aus und zeige, dass dann Gleichheit gilt.
Die Hinrichtung wollte ich mit Widerspruch machen. Ich nehme also an, es gäbe ein [mm] \pi' \not= \pi [/mm] . Das würde auch funktionieren, wenn [mm] \pi' [/mm] nicht [mm] \pi+c [/mm] sein könnte. Der Weg von [mm] \pi' [/mm] = [mm] \pi+c [/mm] ist doch der gleiche wie der Weg von [mm] \pi. [/mm] Und die monotone Umparametrisierung [mm] \beta [/mm] kann doch auch auf [mm] \pi' [/mm] zugreifen, denn dort ändert sich ja nicht der Definitionsbereich, sondern nur er Wertebereich durch Anhängen einer Konstante.
Wenn ich annehme, dass [mm] \pi' \not= \pi [/mm] + c ist, dann funktioniert der Beweis nämlich. Dann ist die Ableitung nach t von [mm] \pi' [/mm] nämlich nicht gleich der Ableitung von [mm] \pi [/mm] und es folgt, dass die Gleichheit nicht gilt...
Diese Konstante stört mich...:)

Wo ist da mein Denkfehler?

Viele Grüße
Alex

        
Bezug
Umparametrisierung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:27 Mo 30.01.2006
Autor: matux

Hallo Alex!


Leider konnte Dir keiner mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]