www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenUmschreiben von f(x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Umschreiben von f(x)
Umschreiben von f(x) < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umschreiben von f(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 Sa 25.08.2007
Autor: moody

Aufgabe
Schreibe den Funktionsterm f(x) in der Form f(x) = a * [mm] b^x [/mm] mit geeigneten a [mm] \in \IR [/mm] und b [mm] \in \IR+ [/mm]

a) f(x) = 2^2x-1

c) f(x) = 0.5^-x+1/2

Ich habe diese Frage nirgenswoanders gestellt.

Sorry, aber ich kann leider keine eigenen Ansätz vorweisen. Ich habe absolut keine Ahnung.

        
Bezug
Umschreiben von f(x): Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Sa 25.08.2007
Autor: Kroni


> Schreibe den Funktionsterm f(x) in der Form f(x) = a * [mm]b^x[/mm]
> mit geeigneten a [mm]\in \IR[/mm] und b [mm]\in \IR+[/mm]
>  
> a) f(x) = 2^2x-1

Hi, ich nehme mal an, dass du folgendes meintest:

[mm] $f(x)=2^{2x-1}$ [/mm]

Dann guck dir am besten die Potenzgesetze an.

Wenn z.B. [mm] $2^{3-1}$ [/mm] dort stehen hast, dann ist das sicher [mm] $2^{2}$. [/mm] Du kannst es aber auch umschrieben:
[mm] $2^{3}\*2^{-1}=2^{3}/2^{1}=2^{2}$ [/mm] Allgemein:

[mm] $a^{c+d}=a^c\*a^d$ [/mm]

Kommst du jetzt weiter?

>  
> c) f(x) = 0.5^-x+1/2

Diese Aufgabe ist vom Prinzip her genau so wie Aufgabe a. Probier dich erst an a, dann wirst du diese auch können=)

>  Ich habe diese Frage nirgenswoanders gestellt.
>  
> Sorry, aber ich kann leider keine eigenen Ansätz vorweisen.
> Ich habe absolut keine Ahnung.


Probier jetzt, einen eigenen Ansatz zu finden.

LG

Kroni

Bezug
                
Bezug
Umschreiben von f(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Sa 25.08.2007
Autor: moody

Also wäre das für a)

2 * 2^2x

?

Bezug
                        
Bezug
Umschreiben von f(x): Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Sa 25.08.2007
Autor: Kroni

Hi,

nicht ganz.

Es steht doch beim ersten Umformungsschritt: [mm] $2^{2x}\*2^{-1}$ [/mm] Du musst auf das Minuszeichen achten.
Dann musst du hinterher noch wissen, dass [mm] $a^{bc}=(a^b)^c$ [/mm] gilt, damit du "oben" nur noch ein x stehen hast, wie in der Aufgabenstellung gefordert.

LG

Kroni

Bezug
                                
Bezug
Umschreiben von f(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 Sa 25.08.2007
Autor: moody

[mm] 0.5*4^x [/mm] bzw. 1 * [mm] 2^x [/mm]

Wäre das richtig? Vielen Dank schonmal^^

Bezug
                                        
Bezug
Umschreiben von f(x): Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Sa 25.08.2007
Autor: Kroni

Hi,

jein.

Die erste Antwort mit [mm] $0.5\*4^x$ [/mm] ist okay. Das ist richtig umgeformt. Allerdings ist [mm] $2^x$ [/mm] nicht richtig. Es gilt: Potenz vor Strichrechnung. Somit kannst du die 0.5 nicht mit der 4 kombinieren. Wenn dem so wäre, müsste ja dann gelten:

[mm] $2^x=2^{2x-1}$, [/mm] und das gilt ja offensichtlich nicht.

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]