Unabhä. Poisson-Punktprozess < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Sei [mm] \eta [/mm] ein Poissonscher Punktprozess im [mm] \IR^d [/mm] und [mm] B_1, [/mm] ..., [mm] B_m [/mm] Borel-messbare Mengen im [mm] \IR^d [/mm] (betrachte im [mm] \IR^d [/mm] den euklidischen Abstand).
Ich behaupte:
[mm] \eta(B_1), [/mm] ..., [mm] \eta(B_m) [/mm] unabhängig [mm] \Rightarrow B_1, [/mm] ..., [mm] B_m [/mm] paarweise disjunkt
Die Umkehrung gilt ja per Definition eines Punktprozesses.
Hat jemand eine Idee, warum das so sein bzw nicht so sein könnte?
|
|
|
|
Hiho,
beschränkten wir uns mal auf den Fall $d=1$.
Überlege dir zuerst: Seien [mm] $X_1,X_2,Y$ [/mm] unabhängige ZV. Unter welchen Bedingungen an Y sind dann auch [mm] $X_1 [/mm] + Y$ und [mm] $X_2 [/mm] + Y$ unabhängig?
Gruß,
Gono
|
|
|
|
|
Hallo,
ich würde sagen, wenn ich weiterhin voraussetze, dass Y P-f.s. konstant ist, kann ich folgern, dass [mm] X_1 [/mm] + Y und [mm] X_2 [/mm] + Y unabhängig sind.
Grüße
|
|
|
|
|
Hiho,
> ich würde sagen, wenn ich weiterhin voraussetze, dass Y P-f.s. konstant ist, kann ich folgern, dass [mm]X_1[/mm] + Y und [mm]X_2[/mm] + Y unabhängig sind.
Das stimmt erstmal, die Frage zielte aber auf die Rückrichtung ab
Ich stelle jetzt mal in den Raum, dass die auch gilt. Stimmst du zu?
Gruß,
Gono
|
|
|
|
|
Ich glaube dir das einfach mal. Beweisen kann ich es nicht.
|
|
|
|
|
Hiho,
das ist eine relativ einfache Überlegung:
1.) Nach Voraussetzungen sind [mm] $X_1,X_2,Y$ [/mm] unabhängig und nehmen wir an [mm] $X_1 [/mm] + Y$ wäre unabhängig von [mm] $X_2+Y$ [/mm]
2.) Da [mm] X_1 [/mm] unabhängig von [mm] X_2 [/mm] und Y, ist [mm] X_1 [/mm] auch unabhängig von [mm] $X_2 [/mm] + Y$
3.) Da nach 1.) [mm] $X_1 [/mm] + Y$ unabhängig von [mm] $X_2 [/mm] + Y$ und nach 2.) [mm] X_1 [/mm] unabhängig von [mm] $X_2+Y$ [/mm] ist auch
4.) $Y = [mm] (X_1 [/mm] + Y) - [mm] X_1$ [/mm] unabhängig von [mm] $X_2 [/mm] + Y$
5.) Nach 4.) ist nun [mm] $X_2+Y$ [/mm] unabhängig von $Y$ und nach Voraussetzung ist auch [mm] $X_2$ [/mm] unabhängig von Y, damit ist auch
6.) $Y = [mm] X_2 [/mm] + Y - [mm] X_2$ [/mm] unabhängig von Y.
D.h. Y ist unabhängig von sich selbst und daraus folgt, das Y konstant ist (Beweis klar?).
Wende den Satz nun auf dein Problem an, indem du annimmst, es gibt zwei Inkremente von nichtdisjunkten Intervallen und zerlege diese so, dass Inkrement 1 die Form [mm] $X_1 [/mm] + Y$ und Inkrement 2 die Form [mm] $X_2 [/mm] + Y$ hat für [mm] $X_1,X_2,Y$ [/mm] unabhängig.
Gruß,
Gono
6.)
|
|
|
|
|
Hallo,
da habe ich ein paar Fragen zu:
2.) Benutzt du hier, dass [mm] X_1 [/mm] und [mm] f(X_2, [/mm] Y) mit f(x,y) := x + y unabhängig sind, weil [mm] X_1 [/mm] unabhängig von [mm] X_2 [/mm] und Y ist?
3.) + 4.) Hier würde man genauso argumentieren wie in 2.) nur mit einer anderen Abb f.
5.) + 6.) Genauso.
Ich gucke mal, ob ich damit klar komme.
Danke schon mal.
|
|
|
|
|
Hiho,
> 2.) Benutzt du hier, dass [mm]X_1[/mm] und [mm]f(X_2,[/mm] Y) mit f(x,y) := x + y unabhängig sind, weil [mm]X_1[/mm] unabhängig von [mm]X_2[/mm] und Y
Ja, genau so ist das.
Gruß,
Gono
|
|
|
|
|
[mm] I_1, I_2 [/mm] Intervalle und [mm] \eta(I_1) [/mm] und [mm] \eta(I_2) [/mm] unabhängig.
Es gilt: [mm] I_1 \cup I_2 [/mm] = [mm] (I_1 \setminus I_2) \cup (I_2 \setminus I_1) \cup (I_1 \cap I_2) [/mm] disjunkte Zerlegung.
[mm] \Rightarrow \eta(I_1 \setminus I_2), \eta(I_2 \setminus I_1), \eta(I_1 \cap I_2) [/mm] unabhängig
[mm] \Rightarrow [/mm] Inkrement 1 = [mm] \eta(I_1 \cup I_2) [/mm] - [mm] \eta(I_2 \setminus I_1) [/mm] = [mm] \eta(I_1 \setminus I_2) [/mm] + [mm] \eta(I_1 \cap I_2) [/mm] = [mm] X_1 [/mm] + Y
Inkrement 2 = [mm] \eta(I_1 \cup I_2) [/mm] - [mm] \eta(I_1 \setminus I_2) [/mm] = [mm] \eta(I_2 \setminus I_1) [/mm] + [mm] \eta(I_1 \cap I_2) [/mm] = [mm] X_2 [/mm] + Y
Vermutlich sind nun beide Inkremente unabhängig. Dann folgt aus obiger Überlegung: Y = [mm] \eta(I_1 \cap I_2) [/mm] = [mm] \lambda(I_1 \cap I_2) [/mm] P-f.s.
wobei [mm] \lambda [/mm] das Intensitätsmaß von unserem PPP ist. Nun ist aber auch [mm] \eta(I_1 \cap I_2) \sim Poi(\lambda(I_1 \cap I_2)). [/mm] Eine Poissonverteilte ZV kann nicht f.s. konstant sein, also muss der Parameter 0 sein: [mm] \lambda(I_1 \cap I_2) [/mm] = 0.
[mm] \Rightarrow \eta(I_1 \cap I_2) [/mm] = 0 P-f.s.
Nun weiß ich nicht, wie ich hieraus folgern soll, dass [mm] I_1 \cap I_2 [/mm] = [mm] \emptyset [/mm] ist.
|
|
|
|
|
Hiho,
ich muss mich an deine Schreibweise gewöhnen, die ist doch recht ungewöhnlich, aber dann wollen wir mal.
> [mm]I_1, I_2[/mm] Intervalle und [mm]\eta(I_1)[/mm] und [mm]\eta(I_2)[/mm] unabhängig.
Ich vermute mal, dass dann [mm] \eta(I_1) [/mm] das Inkrement auf [mm] $I_1$ [/mm] ist.
> Es gilt: [mm]I_1 \cup I_2[/mm] = [mm](I_1 \setminus I_2) \cup (I_2 \setminus I_1) \cup (I_1 \cap I_2)[/mm]
> disjunkte Zerlegung.
> [mm]\Rightarrow \eta(I_1 \setminus I_2), \eta(I_2 \setminus I_1), \eta(I_1 \cap I_2)[/mm]
> unabhängig
> [mm]\Rightarrow[/mm] Inkrement 1 = [mm]\eta(I_1 \cup I_2)[/mm] - [mm]\eta(I_2 \setminus I_1)[/mm]
> = [mm]\eta(I_1 \setminus I_2)[/mm] + [mm]\eta(I_1 \cap I_2)[/mm] = [mm]X_1[/mm] + Y
> Inkrement 2 = [mm]\eta(I_1 \cup I_2)[/mm] - [mm]\eta(I_1 \setminus I_2)[/mm]
> = [mm]\eta(I_2 \setminus I_1)[/mm] + [mm]\eta(I_1 \cap I_2)[/mm] = [mm]X_2[/mm] + Y
> Vermutlich sind nun beide Inkremente unabhängig.
Nicht nur vermutlich. [mm] X_1 [/mm] und [mm] X_2 [/mm] sind unabhängig, weil [mm] $I_1\setminus I_2$ [/mm] und [mm] $I_2\setminus I_1$ [/mm] disjunkt sind.
> Dann folgt aus obiger Überlegung: Y = [mm]\eta(I_1 \cap I_2)[/mm] =
> [mm]\lambda(I_1 \cap I_2)[/mm] P-f.s.
Wie kommst du darauf, dass da plötzlich das Intensitätsmaß steht?
Das brauchst du auch gar nicht.
Nach unserem Satz gilt nun (da beide Inkremente unabhängig sein sollen), dass Y P.f.s. konstant ist.
> Nun ist aber auch [mm]\eta(I_1 \cap I_2) \sim Poi(\lambda(I_1 \cap I_2)).[/mm] Eine Poissonverteilte ZV kann nicht f.s. konstant sein,
korrekt, was ein Widerspruch ist, also ist unsere Annahme "$ [mm] \eta(I_1) [/mm] $ und $ [mm] \eta(I_2) [/mm] $ unabhängig" falsch für nicht disjunkte Intervalle.
D.h. $ [mm] \eta(I_1) [/mm] $ und $ [mm] \eta(I_2) [/mm] $ sind nicht unabhängig.
D.h. du hast [mm] "$I_1, I_2$ [/mm] nicht disjunkt [mm] $\Rightarrow \eta(I_1) [/mm] $ und $ [mm] \eta(I_2) [/mm] $ nicht unabhängig".
Bilde nun die Kontraposition.
Gruß,
Gono
|
|
|
|
|
Hallo,
danke für deine Hilfe. Ich habe das nun verstanden.
> Hiho,
>
> ich muss mich an deine Schreibweise gewöhnen, die ist doch
> recht ungewöhnlich, aber dann wollen wir mal.
>
> > [mm]I_1, I_2[/mm] Intervalle und [mm]\eta(I_1)[/mm] und [mm]\eta(I_2)[/mm]
> unabhängig.
>
> Ich vermute mal, dass dann [mm]\eta(I_1)[/mm] das Inkrement auf [mm]I_1[/mm]
> ist.
>
> > Es gilt: [mm]I_1 \cup I_2[/mm] = [mm](I_1 \setminus I_2) \cup (I_2 \setminus I_1) \cup (I_1 \cap I_2)[/mm]
> > disjunkte Zerlegung.
> > [mm]\Rightarrow \eta(I_1 \setminus I_2), \eta(I_2 \setminus I_1), \eta(I_1 \cap I_2)[/mm]
> > unabhängig
> > [mm]\Rightarrow[/mm] Inkrement 1 = [mm]\eta(I_1 \cup I_2)[/mm] - [mm]\eta(I_2 \setminus I_1)[/mm]
> > = [mm]\eta(I_1 \setminus I_2)[/mm] + [mm]\eta(I_1 \cap I_2)[/mm] = [mm]X_1[/mm] + Y
> > Inkrement 2 = [mm]\eta(I_1 \cup I_2)[/mm] - [mm]\eta(I_1 \setminus I_2)[/mm]
> > = [mm]\eta(I_2 \setminus I_1)[/mm] + [mm]\eta(I_1 \cap I_2)[/mm] = [mm]X_2[/mm] + Y
>
>
>
> > Vermutlich sind nun beide Inkremente unabhängig.
> Nicht nur vermutlich. [mm]X_1[/mm] und [mm]X_2[/mm] sind unabhängig, weil
> [mm]I_1\setminus I_2[/mm] und [mm]I_2\setminus I_1[/mm] disjunkt sind.
Stimmt.
>
> > Dann folgt aus obiger Überlegung: Y = [mm]\eta(I_1 \cap I_2)[/mm] =
> > [mm]\lambda(I_1 \cap I_2)[/mm] P-f.s.
> Wie kommst du darauf, dass da plötzlich das
> Intensitätsmaß steht?
> Das brauchst du auch gar nicht.
Ja, du hast recht. Mir war nicht bewusst, dass wir unseren Beweis per Kontradiktion durchführen.
>
> Nach unserem Satz gilt nun (da beide Inkremente unabhängig
> sein sollen), dass Y P.f.s. konstant ist.
>
> > Nun ist aber auch [mm]\eta(I_1 \cap I_2) \sim Poi(\lambda(I_1 \cap I_2)).[/mm]
> Eine Poissonverteilte ZV kann nicht f.s. konstant sein,
>
> korrekt, was ein Widerspruch ist, also ist unsere Annahme "[mm] \eta(I_1)[/mm]
> und [mm]\eta(I_2)[/mm] unabhängig" falsch für nicht disjunkte
> Intervalle.
> D.h. [mm]\eta(I_1)[/mm] und [mm]\eta(I_2)[/mm] sind nicht unabhängig.
>
> D.h. du hast "[mm]I_1, I_2[/mm] nicht disjunkt [mm]\Rightarrow \eta(I_1)[/mm]
> und [mm]\eta(I_2)[/mm] nicht unabhängig".
> Bilde nun die Kontraposition.
Okay, das habe ich verstanden.
>
> Gruß,
> Gono
|
|
|
|