www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungUnabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitsrechnung" - Unabhängigkeit
Unabhängigkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Mi 19.08.2015
Autor: bennoman

Hallo zusammen,

ich habe gegeben, dass die Ereignisse A,B,C unabhängig seien.

Nun soll ich überprüfen, ob A [mm] \cap [/mm] B und [mm] B\cap [/mm] C unabhängig sind.
Da ich hier aber keine Zahlenwerte gegeben habe, weiß ich nicht wie ich die Unabhängigkeit überprüfen soll.

Beste Grüße
Benno

        
Bezug
Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 Mi 19.08.2015
Autor: rabilein1

Am besten, du stellst dir Würfel vor. Wenn du drei Würfel wirfst, sind die Ergebnisse voneinander mit Sicherheit unabhängig.



Bezug
                
Bezug
Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:55 Do 20.08.2015
Autor: Al-Chwarizmi


> Am besten, du stellst dir Würfel vor. Wenn du drei Würfel
> wirfst, sind die Ergebnisse voneinander mit Sicherheit
> unabhängig.


Hallo rabilein,

natürlich könnte man mit einer Aufgabe mit 3 Würfeln
konkrete Beispiele zu unabhängigen Ereignissen machen.
Es wäre dann allerdings noch nötig, die 3 Ereignisse
A,B,C  klar zu definieren.
Und, leider:  Auch falls es gelingen sollte, unabhängige
A,B,C so zu definieren, dass  A [mm] \cap [/mm] B und  B [mm] \cap [/mm] C  unabhängig
sind, wäre damit noch nicht bewiesen, dass diese Eigenschaft
dann auch allgemein zutrifft.
Findet man allerdings ein Gegenbeispiel mit unabhängigen
A,B,C  aber abhängigen   A [mm] \cap [/mm] B und  B [mm] \cap [/mm] C  , dann dürfte
man schließen, dass die fragliche Eigenschaft eben nicht
allgemein zutrifft.

LG ,   Al

Bezug
        
Bezug
Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:31 Do 20.08.2015
Autor: DieAcht

Hallo Benno!


Sei [mm] $(\Omega,F,P)$ [/mm] ein Wahrscheinlichkeitsraum. [mm] $A,B,C\in [/mm] F$ sind genau
dann unabhängig, falls sie paarweise unabhängig sind, also
falls gilt

      [mm] $P(A\cap B)=P(A)*P(B),\quad P(A\cap C)=P(A)*P(C),\quad P(B\cap [/mm] C)=P(B)*P(C)$

und zusätzlich gilt

      [mm] $P(A\cap B\cap [/mm] C)=P(A)*P(B)*P(C)$.

Zu zeigen: [mm] $A\cap B\in [/mm] F$ und [mm] $B\cap C\in [/mm] F$ sind unabhängig, d.h.

      [mm] $P((A\cap B)\cap(B\cap C))=P(A\cap B)*P(B\cap [/mm] C)$.

Edit: Siehe Tobias Mitteilung.


Jetzt wieder du!


Gruß
DieAcht

Bezug
                
Bezug
Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:13 Do 20.08.2015
Autor: tobit09

Hallo zusammen!


> Zu zeigen: [mm]A\cap B\in F[/mm] und [mm]B\cap C\in F[/mm] sind unabhängig,
> d.h.
>  
> [mm]P((A\cap B)\cap(B\cap C))=P(A\cap B)*P(B\cap C)[/mm].

Das zu zeigen wird nicht gelingen, es stimmt nämlich im Allgemeinen nicht.


Viele Grüße
Tobias

Bezug
                        
Bezug
Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:28 Do 20.08.2015
Autor: bennoman

Falls das tatsächlich nicht stimmen sollte, wie soll man denn stattdessen vorgehen?

Bezug
                                
Bezug
Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Do 20.08.2015
Autor: Al-Chwarizmi


> Falls das tatsächlich nicht stimmen sollte, wie soll man
> denn stattdessen vorgehen?

Wie immer in solchen Fällen:  ein Gegenbeispiel suchen und angeben !

LG ,   Al-Chw.


Bezug
                                
Bezug
Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:29 Do 20.08.2015
Autor: DieAcht

Sorry für die mögliche Verwirrung und vielen Dank an Tobias!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]