www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikUnabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Unabhängigkeit
Unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 Di 19.01.2010
Autor: Fry

Hallo,

warum gilt, dass wenn [mm] X_1,...,X_n [/mm] stochastisch unabhängig sind,
dass dann auch [mm] X_1+...+X_{n-1} [/mm] und [mm] X_n [/mm] stochastisch unabhängig sind?

Gruß
Fry

        
Bezug
Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Di 19.01.2010
Autor: gfm

Unabhängigkeit bedeutet anschaulich, dass z.B. die Realisierungen ersten n-1 ZVn keinen Einfluss auf die der letzten haben.

Alle ZVn sind unabhängig -> Das W-Maß des Vektors aus allen ZVn ist das Produktmaß der Einzelnen.

Das (gemeinsame) W-Maß des zweier Vektors aus der Sume der ersten n-1 und der letzten ZV ist das Produktmaß aus Faltungsmaß der ersten n-1 ZVn und der letzten ZV, also wieder ein Produktmaß. Fertig.



Bezug
                
Bezug
Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Di 19.01.2010
Autor: Fry

Hallo !
Danke schön für deine Antwort.
Gibt es auch ne Möglichkeit es mit stochastischen Mitteln und ohne WT zu erklären?


Gruß
Fry

Bezug
                        
Bezug
Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Di 19.01.2010
Autor: gfm

Was meinst Du mit "stochastischen Mitteln"?

Es sind eindeutig w-theoretisch besetzte Fachtermini benutzt. Die muss Du nur durch die kompakteren mathematischen Token ersetzen. Mach das echt mal ganz stupide eins zu eins und schau dann was auf dem Papier steht....

LG

gfm

P.S.: Oder wolltest Du einfach nur eine fertige Lösung haben? Ich habe gelesen, hier bekäme man keine fertigen Lösungen sondern lerne auch noch was. Wenn Du nur an ersterem interessiert bist, dann sag es einfach.



Bezug
                                
Bezug
Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 Mi 20.01.2010
Autor: Fry

Hey !

mir gings nur darum, ob man das halt ohne wtheoretische Begriffe erklären kann, gebe Nachhilfe in Stochastik und  in DIESER Vorlesung kommen halt Begrifflichkeiten wie "Produktmaß" etc. nicht vor.

Gruß
Fry


Bezug
                                        
Bezug
Unabhängigkeit: Eure Definition
Status: (Frage) beantwortet Status 
Datum: 11:57 Mi 20.01.2010
Autor: gfm

Kannst Du dann genauer definieren von welcher Art die [mm] X_{i} [/mm] sind? Also in welcher Menge nehmen Sie ihre Werte an und was for eine Verteilung sollen sie besitzen (diskrete, stetig, glatt?) und wie habt ihr "unabhängig" definiert?

LG

gfm

Bezug
                                                
Bezug
Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Do 21.01.2010
Autor: Fry

Hallo gfm,

also es wird dort nur von allgemenen Zufallsvariablen [mm] X:\Omega\to\IR [/mm]
gesprochen. Unabhängigkeit haben die über
[mm] P(X_1\le a_1,...,X_n\le a_n)=\prod_{i=1}^{n}P(X_i=a_i) [/mm] für alle [mm] a_i\in\IR [/mm]
erklärt.

Gruß
Fry

Bezug
                                                        
Bezug
Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 Do 21.01.2010
Autor: gfm

Seien A,B, und C unabh. ZVn. Dann gilt

[mm] P(\{A+B\le r\} \cap \{C\le s\})=\integral_{\Omega}1_{[-\infty,r]}(A(\omega)+B(\omega))1_{[-\infty,s]}(C(\omega))dP(\omega)=\integral_{A(\Omega)\times B(\Omega)\times C(\Omega)}1_{[-\infty,r]}(a+b)1_{[-\infty,s]}(c)dF_{(A,B,C)}(a,b,c) [/mm]
[mm] =\integral_{A(\Omega)\times B(\Omega)\times C(\Omega)}1_{[-\infty,r]}(a+b)1_{[-\infty,s]}(c)dF_{A}(a)dF_{B}(b)dF_{C}(c)=\integral_{A(\Omega)\times B(\Omega)}1_{[-\infty,r]}(a+b)dF_{A}(a)dF_{B}(b)\integral_{C(\Omega)}1_{[-\infty,s]}(c)dF_{C}(c)=F_{A+B}(r)F_{C}(c) [/mm]

[mm] =P(\{A+B\le r\})P(\{C\le s\}) [/mm]

Somit sind dann A+B und C auch unabh. Da A und B ja auch eine Summen von ZVn sein können, folgt der Schluß für beliebig (endlich) viele ZVn durch vollst. Induktion.

LG

gfm


Bezug
                                                                
Bezug
Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:25 Fr 22.01.2010
Autor: Fry

Wow, danke schön für die ausführliche Rechnung ! :)

Gruß
Fry

Bezug
                                                                        
Bezug
Unabhängigkeit: Bitte schön!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:58 Fr 22.01.2010
Autor: gfm

:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]