www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikUnabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "mathematische Statistik" - Unabhängigkeit
Unabhängigkeit < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit: geordnete Stat./ Rangvektor
Status: (Frage) überfällig Status 
Datum: 14:30 So 22.04.2012
Autor: mikexx

Aufgabe
[mm] \textit{Hallo, liebes Forum!} [/mm]

Ich versuche gerade einen Beweis zu verstehen. Und zwar geht es um folgende Aussage:

Seien [mm] $X_i, [/mm] i=1,...,n$ Zufallsvariablen mit [mm] $X_1,...,X_n$ [/mm] unabhängig identisch verteilt wie F, F stetig. Dann gilt:

Die geordnete Statistik [mm] $(X_{(1)},...,X_{(n)})$ [/mm] und der Rangvektor [mm] $R:=R(X_1,...,X_n)$ [/mm] sind stochastisch unabhängig.


Wir haben das so aufgeschrieben:

Sei [mm] $B\in\mathcal{B}^n$ [/mm] und [mm] $\pi$ [/mm] eine Permutation auf [mm] $\left\{1,...,n\right\}$. [/mm] Dann:

[mm] $P((X_{(1)},...,X_{(n)})\in [/mm] B, [mm] R=\pi)$ [/mm]

[mm] $=P(\vec{X}_{()}\in B\cap\mathbb R_{\leq}^{n}, R=\pi)$ [/mm]

[mm] $=P((X_{\pi^{-1}(1)},...,X_{\pi^{-1}(n)})\in B\cap\mathbb R_{\leq}^{n}, R=\pi)$ [/mm]

[mm] $=P(\pi^{-1}(X_1,...,X_n)\in B\cap\mathbb R_{\leq}^{n})$ [/mm]

Wegen u.i.v.:

[mm] $=P(\vec{X}\in B\cap\mathbb R_{\leq}^{n})$ \textbf{(1)} [/mm]

[mm] $=\frac{1}{n!}P(\vec{X}_{()}\in B\cap\mathbb R_{\leq}^{n})$ \textbf{(2)} [/mm]

[mm] $=P(R=\pi)\cdot P(\vec{X}_{()}\in [/mm] B)$


Das Meiste daran ist mir auch - denke ich - klar, nur die mit (1) und (2) markierten Zeilen nicht.


Ich illustriere mein Problem mal an einem Beispiel:

Es sei [mm] $\vec{X}=(3,5,4)$. [/mm]

Dann ist $R=(1,3,2)$ und sei [mm] $R=\pi$. [/mm]

Gehe ich die Beweisschritte hiermit einfach mal durch:

[mm] $P((X_{(1)},...,X_{(3)})\in [/mm] B, [mm] R=\pi)=P((3,4,5)\in [/mm] B, R=(1,3,2))$

[mm] $=P(\vec{X}_{()}\in B\cap\mathbb R_{\leq}^{3}, [/mm] R=(1,3,2))$

Weiter gilt dann:

[mm] $\pi^{-1}=(1,3,2), \pi^{-1}(\vec{X})=(X_1,X_3,X_2)$ [/mm]

Also oben weiter mit:

[mm] $=P((X_{\pi^{-1}(1)},X_{\pi^{-1}(2)},X_{\pi^{-1}(3)})\in B\cap\mathbb R_{\leq}^{3}, [/mm] R=(1,3,2))$

[mm] $=P((X_1,X_3,X_2)\in B\cap\mathbb R_{\leq}^{3}, [/mm] R=(1,3,2))$

[mm] $=P(\pi^{-1}(X_1,X_2,X_3)\in B\cap\mathbb R_{\leq}^{n})$ [/mm]

(Daß [mm] $R=\pi$ [/mm] ist, steckt hier ja mit drin, denn in unserer Vorlesung hatten wir das Lemma: Sei [mm] $X\in\mathbb R^n$ [/mm] mit [mm] $R(\vec{X})\in\Pi_{n}$=Menge [/mm] aller Permutationen über [mm] $\left\{1,...,n\right\}$ [/mm] und [mm] $d:=(R(\vec{X}))^{-1}\in\Pi_n$. [/mm] So gilt [mm] $x_{(i)}=x_{d_i}$. [/mm] Und hier ist ja [mm] $(R(\vec{X}))^{-1}=(\pi)^{-1}$.) [/mm]

[mm] \textit{Und jetzt ist genau der Punkt, an dem ich nicht weiterkomme (das, was ich oben als (1) und (2) markiert habe):} [/mm]

Wieso folgt denn jetzt aus der u.i.v.-Annahme, daß

[mm] $=P((X_1,X_2,X_3)\in B\cap\mathbb R_{\leq}^{3})$ [/mm]

Und wieso ist das dann identisch mit

[mm] $\frac{1}{3!}P(\vec{X}_{()}\in B\cap\mathbb R_{\leq}^{3})$ [/mm] ?


[mm] \textit{Das ist mir noch unklar.} [/mm]






        
Bezug
Unabhängigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 24.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]