www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungUnabhängigkeit von 3 Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Unabhängigkeit von 3 Vektoren
Unabhängigkeit von 3 Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit von 3 Vektoren: Beweis
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:46 Do 12.05.2005
Autor: DeusDeorum

Hi,
Meine Freundin hat mich gerade angerufen und mir gesagt, dass sie folgende Aufgabe dringend bis morgen gelöst haben soll. Allerdings weiss sie überhaupt nicht wie sie vorgehen soll .

"Die Vektoren a,b,c sind linear unabhängig. Zeige die lineare Unabhängigkeit der Vektoren:
a+2b, a+b+c, a-b-c
und zwar durch ein Wiederspruchverfahren  "

Unser Problem ist, dass wir immer versuchen ein LGS aufzustellen, jedoch keine ahnung haben, wie wir auf die 3 Zeilen kommen sollen.
Die erste Zeile wäre ja :

r1*(a+2b)+r2* (a+b+c) + r3* (a-b-c) = 0


Wie komme ich jedoch auf weitere 2 Zeilen um die 3 Unbekannten herauszufinden ?! Oder ist das Widerspruchverfahren etwas ganz anderes ? (ich habe davon eigentlich noch nie gehört)


Bitte helft uns, meine Freundin braucht es bis morgen

        
Bezug
Unabhängigkeit von 3 Vektoren: Beweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:06 Do 12.05.2005
Autor: DeusDeorum

Hi,
Meine Freundin hat mich gerade angerufen und mir gesagt, dass sie folgende Aufgabe dringend bis morgen gelöst haben soll. Allerdings weiss sie überhaupt nicht wie sie vorgehen soll .

"Die Vektoren a,b,c sind linear unabhängig. Zeige die lineare Unabhängigkeit der Vektoren:
a+2b, a+b+c, a-b-c
und zwar durch ein Wiederspruchverfahren  "

Unser Problem ist, dass wir immer versuchen ein LGS aufzustellen, jedoch keine ahnung haben, wie wir auf die 3 Zeilen kommen sollen.
Die erste Zeile wäre ja :

r1*(a+2b)+r2* (a+b+c) + r3* (a-b-c) = 0


Wie komme ich jedoch auf weitere 2 Zeilen um die 3 Unbekannten herauszufinden ?! Oder ist das Widerspruchverfahren etwas ganz anderes ? (ich habe davon eigentlich noch nie gehört)

Oder ist vieleicht folgendes die Lösung : =?

r1*(a+2b) + r2*(a+b+c) = r3*(a-b-c)
r1*(a+2b)+r3*(a-b-c) = r2*(a+b+c)
r2*(a+b+c) + r3*(a-b-c) = r1*(a+2b)

?


Bitte helft uns, meine Freundin braucht es bis morgen

Bezug
        
Bezug
Unabhängigkeit von 3 Vektoren: Widerspruchsbeweis
Status: (Antwort) fertig Status 
Datum: 19:38 Do 12.05.2005
Autor: Loddar

Hallo Gott der Götter ;-) ...


> "Die Vektoren a,b,c sind linear unabhängig.
> Zeige die lineare Unabhängigkeit der Vektoren:
> a+2b, a+b+c, a-b-c
> und zwar durch ein Wiederspruchverfahren  "

Da die drei genannten Vektoren [mm] $\vec{a}$, $\vec{b}$ [/mm] und [mm] $\vec{c}$ [/mm] gemäß Voraussetzung linear unabhängig sein sollen, existiert für die Linearkombination nur die Triviallösung $r \ = \ s \ = \ t \ = \ 0$

[mm] $r*\vec{a} [/mm] + [mm] s*\vec{b} [/mm] + [mm] t*\vec{c} [/mm] \ = \ [mm] \vec{0}$ [/mm]


Mit dem Widerspruchsbeweis sollst Du nun folgendermaßen vorgehen.

Behauptung:
Die drei Vektoren [mm] $(\vec{a} [/mm] + [mm] 2*\vec{b})$, $(\vec{a} [/mm] + [mm] \vec{b} [/mm] + [mm] \vec{c})$ [/mm] sowie [mm] $(\vec{a} [/mm] - [mm] \vec{b} [/mm] - [mm] \vec{c})$ [/mm] seien linaer abhängig.

Damit muß für die Linearkombination auch eine nicht-triviale Lösung (s.o.) existieren:

[mm] $u*(\vec{a} [/mm] + [mm] 2*\vec{b}) [/mm] + [mm] v*(\vec{a} [/mm] + [mm] \vec{b} [/mm] + [mm] \vec{c}) [/mm] + [mm] w*(\vec{a} [/mm] - [mm] \vec{b} [/mm] - [mm] \vec{c}) [/mm] \ = \ [mm] \vec{0}$ [/mm]

Durch Umformen / Zusammenfassen der linken Gleichungsseite mußt Du nun einen Widerspruch erzeugen, sprich: Du mußt zeigen, es gibt nur die Triviallösung $u \ = \ v \ = \ w \ = \ 0$


Verstanden? Probier' das mal ...

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]