Unabhängigkeit von ZVs < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien [mm] X_{1},...,X_{n} [/mm] unabhängige Zufallsvariablen auf [mm] (\Omega,\mathcal{A},\mathcal{P}) [/mm] mit Werten in {0,1} und Erfolgswahrscheinlichkeit [mm] P(X_{i}=1) [/mm] = [mm] \rho_{i} [/mm] . Leite die folgenden Wahrscheinlichkeiten her:
a) kein einziger Erfolg, d.h. [mm] P(X_{1}+...+X_{n} [/mm] = 0 )
b) genau ein Erfolg, d.h. [mm] P(X_{1}+...+X_{n} [/mm] = 1 )
c) mindestens zwei Erfolge, d.h. [mm] P(X_{1}+...+X_{n} \ge [/mm] 2)
d) Was ergibt sich für den Spezialfall [mm] \rho_{i} [/mm] = [mm] \rho [/mm] und [mm] P(X_{1}+...+X_{n} [/mm] = k), mit k [mm] \le [/mm] n? |
Hallo,
ich bin mir leider absolut nicht sicher bei dem was ich mir da zusammengeschrieben habe, und würde mich über Korrekturen/Hilfe sehr freuen :)
Zu a) habe ich mir einfach gedacht, dass es folgendem entspricht:
[mm] P(X_{1}=0)\cap...\cap P(X_{n}=0). [/mm] Das führt mich dann durch die Unabhängigkeit zu [mm] P(X_{1}=0)*...*P(X_{n}=0), [/mm] und das wiederum führt mich durch die Gegenereignisse zu [mm] (1-\rho_{1})*...*(1-\rho_{n})= \produkt_{i=1}^{n}(1-\rho_{i}) [/mm] .
Zu b) habe ich folgenen Ansatz: Da immer nur genau eine [mm] ZV_{i} [/mm] auf 1 "steht", gilt für diese die W'keit [mm] \rho_{i}, [/mm] und für alle anderen [mm] ZV_{j} [/mm] die W'keit [mm] (1-\rho_{j}). [/mm] Dafür gibt es n verschiedene Möglichkeiten, d.h es ergibt sich folgendes als Gesamtwahrscheinlichkeit:
[mm] \rho_{1}*(1-\rho_{2})*...*(1-\rho_{n}) [/mm] + [mm] (1-\rho_{1})*\rho_{2}*(1-\rho_{3})*...*(1-\rho_{n}) [/mm] +...+ [mm] (1-\rho_{1})*...*(1-\rho_{n-1})*\rho_{n}
[/mm]
Wie schreibe ich das gescheit hin (falls das überhaupt richtig ist ^^)? Ich sehe da keine Möglichkeit das zusammenzufassen, da ja alle [mm] \rho_{i} [/mm] unterschiedlich sind.
Zu c) dachte ich mir dass es ganz simpel (1-P(Aufgabe b)) - P(Aufgabe a) sein sollte, kann ich nur noch nicht richtig hinschreiben da mir P(Aufgabe b) noch fehlt.
Zu d) bin ich bei der Binomialverteilung gelandet, also [mm] \vektor{n \\ k}\rho^k(1-\rho)^{n-k}
[/mm]
Bin jetzt Mal sehr gespannt wieviel davon ansatzweise richtig ist. Vielen Dank an alle die sich die Zeit nehmen das hier durchzuschauen :)
grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:04 So 12.12.2010 | Autor: | ullim |
Hi,
> Seien [mm]X_{1},...,X_{n}[/mm] unabhängige Zufallsvariablen auf
> [mm](\Omega,\mathcal{A},\mathcal{P})[/mm] mit Werten in {0,1} und
> Erfolgswahrscheinlichkeit [mm]P(X_{i}=1)[/mm] = [mm]\rho_{i}[/mm] . Leite die
> folgenden Wahrscheinlichkeiten her:
> a) kein einziger Erfolg, d.h. [mm]P(X_{1}+...+X_{n}[/mm] = 0 )
> b) genau ein Erfolg, d.h. [mm]P(X_{1}+...+X_{n}[/mm] = 1 )
> c) mindestens zwei Erfolge, d.h. [mm]P(X_{1}+...+X_{n} \ge[/mm] 2)
> d) Was ergibt sich für den Spezialfall [mm]\rho_{i}[/mm] = [mm]\rho[/mm]
> und [mm]P(X_{1}+...+X_{n}[/mm] = k), mit k [mm]\le[/mm] n?
> Hallo,
> ich bin mir leider absolut nicht sicher bei dem was ich
> mir da zusammengeschrieben habe, und würde mich über
> Korrekturen/Hilfe sehr freuen :)
>
> Zu a) habe ich mir einfach gedacht, dass es folgendem
> entspricht:
> [mm]P(X_{1}=0)\cap...\cap P(X_{n}=0).[/mm] Das führt mich dann
> durch die Unabhängigkeit zu [mm]P(X_{1}=0)*...*P(X_{n}=0),[/mm] und
> das wiederum führt mich durch die Gegenereignisse zu
> [mm](1-\rho_{1})*...*(1-\rho_{n})= \produkt_{i=1}^{n}(1-\rho_{i})[/mm]
> Zu b) habe ich folgenen Ansatz: Da immer nur genau eine
> [mm]ZV_{i}[/mm] auf 1 "steht", gilt für diese die W'keit [mm]\rho_{i},[/mm]
> und für alle anderen [mm]ZV_{j}[/mm] die W'keit [mm](1-\rho_{j}).[/mm]
> Dafür gibt es n verschiedene Möglichkeiten, d.h es ergibt
> sich folgendes als Gesamtwahrscheinlichkeit:
> [mm]\rho_{1}*(1-\rho_{2})*...*(1-\rho_{n})[/mm] +
> [mm](1-\rho_{1})*\rho_{2}*(1-\rho_{3})*...*(1-\rho_{n})[/mm] +...+
> [mm](1-\rho_{1})*...*(1-\rho_{n-1})*\rho_{n}[/mm]
> Wie schreibe ich das gescheit hin (falls das überhaupt
> richtig ist ^^)? Ich sehe da keine Möglichkeit das
> zusammenzufassen, da ja alle [mm]\rho_{i}[/mm] unterschiedlich
> sind.
Zur Schreibweise
[mm] P(X_{1}+...+X_{n}=1)=\summe_{i=1}^{n}\rho_i\produkt_{k=1;k\ne{i}}^{n}(1-\rho_k)
[/mm]
Wenn [mm] \rho_i=\rho [/mm] gilt folgt [mm] P(X_{1}+...+X_{n}=1)=n*\rho*(1-\rho)^{n-1} [/mm] was ja auch Sinn macht und mit Aufgabe (d) zusammen passt.
> Zu c) dachte ich mir dass es ganz simpel (1-P(Aufgabe b)) -
> P(Aufgabe a) sein sollte, kann ich nur noch nicht richtig
> hinschreiben da mir P(Aufgabe b) noch fehlt.
und (b) hast Du ja jetzt.
> Zu d) bin ich bei der Binomialverteilung gelandet, also
> [mm]\vektor{n \\ k}\rho^k(1-\rho)^{n-k}[/mm]
> Bin jetzt Mal sehr gespannt wieviel davon ansatzweise
> richtig ist. Vielen Dank an alle die sich die Zeit nehmen
> das hier durchzuschauen :)
>
> grüße
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|
|
Vielen Dank für's Drüberschauen.
Kann's fast gar nicht glauben dass ich das auf Anhieb richtig gemacht habe. Das hat mir doch gleich 'nen großen "Mathe-Selbstbewusstseins-Schub" gegeben ;)
grüße
|
|
|
|