www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieUnabhängigkeitsbeweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Unabhängigkeitsbeweis
Unabhängigkeitsbeweis < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeitsbeweis: auf N_0 konzentrierte ZV
Status: (Frage) beantwortet Status 
Datum: 15:41 Fr 10.02.2012
Autor: Infostudent

Aufgabe
Zwei reelle ZVen seien auf [mm] \IN_0 [/mm] konzentriert, also [mm] P_{X_{1}}(\IN_0) [/mm] = 1 = [mm] P_{X_2}(\IN_0). [/mm]
Z.z.: [mm] X_1, X_2 [/mm] unabhängig [mm] \gdw P[X_1 [/mm] = i, [mm] X_2 [/mm] = j] = [mm] P[X_1 [/mm] = i] * [mm] P[X_2 [/mm] = j], i, j [mm] \in \IN_0 [/mm]

Die Richtung [mm] "\Rightarrow" [/mm] ist mit der Definition der Unabhängigkeit trivial, aber ich bin mir bei der Rückrichtung nicht ganz sicher. Wir haben im Skript 1-2 Beweise derselben Form geführt, wo die eine Richtung auch trivial war und wir die Rückrichtung nur für Mengen einer bestimmten Form gegeben war, z.B. [mm] (\infty, [/mm] x]
Anschließend haben wir die allgemeine Gleichheit aus dem Fortsetzungssatz für endliche Maße gefolgert. Wie geht das aber in diesem Fall? Die Einpunktmengen erzeugen im Gegensatz zu den halboffenen Intervallen von oben nunmal nicht die Borel-Algebra, also kann ich diesen Satz gar nicht anwenden oder genügt es zu zeigen, dass beide Seiten für i,j [mm] \in \IR [/mm] \ [mm] \IN_0 [/mm] 0 sind und die Gleichheit daher auch allgemein gilt?

        
Bezug
Unabhängigkeitsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Fr 10.02.2012
Autor: SEcki


>  Anschließend haben wir die allgemeine Gleichheit aus dem
> Fortsetzungssatz für endliche Maße gefolgert. Wie geht
> das aber in diesem Fall? Die Einpunktmengen erzeugen im
> Gegensatz zu den halboffenen Intervallen von oben nunmal
> nicht die Borel-Algebra, also kann ich diesen Satz gar
> nicht anwenden oder genügt es zu zeigen, dass beide Seiten
> für i,j [mm]\in \IR[/mm] \ [mm]\IN_0[/mm] 0 sind und die Gleichheit daher
> auch allgemein gilt?

So aenlich denke ich schon - du hast jedenfalls Gleichheit auf der von [m]\IN[/m] erzeugten Subsigmalagebra vermittels dieses Satzes. Dann muss man es wohl entsprechend fortsetzen.

SEcki


Bezug
                
Bezug
Unabhängigkeitsbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Mo 13.02.2012
Autor: Infostudent

Ok und die Fortsetzung von der Subsigma-Algebra auf [mm] \mathcal{B}(\IR) [/mm] folgt direkt oder muss ich dazu noch was zeigen?

Was ist denn wenn ich zeige, dass [mm] P[X_1 [/mm] = i, [mm] X_2 [/mm] = j] = 0 = [mm] P[X_1 [/mm] = i] * [mm] P[X_2 [/mm] = j] für alle i, j [mm] \in \IR [/mm] \ [mm] \IN [/mm]
Habe ich mit der Voraussetzung, dass die Beziehung auch für alle i, j [mm] \in \IN [/mm] gilt, nicht gezeigt, dass sie auch auf [mm] \mathcal{B}(\IR) [/mm] gilt?

Bezug
                        
Bezug
Unabhängigkeitsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Di 14.02.2012
Autor: Gonozal_IX

Hiho,

es gilt doch:

[mm] $\IP(X_1 \le c_1, X_2 \le c_2) [/mm] = [mm] \summe_{\substack{i,j \in \IN_0 \\ i \le c_1, j \le c_2}} \IP(X_1 [/mm] = i, [mm] X_2 [/mm] = j) = [mm] \summe_{\substack{i,j \in \IN_0 \\ i \le c_1, j \le c_2}} \IP(X_1 [/mm] = i) * [mm] \IP(X_2 [/mm] = j)$

$ = [mm] \summe_{\substack{i \in \IN_0 \\ i \le c_1}} \IP(X_1 [/mm] = i) * [mm] \summe_{\substack{j \in \IN_0 \\ j \le c_2}} \IP(X_2 [/mm] = j) = [mm] \IP(X_1 \le c_1) [/mm] * [mm] \IP(X_2 \le c_2)$ [/mm]

Und damit sind [mm] X_1 [/mm] und [mm] X_2 [/mm] unabhängig.

Begründe jedes Gleichheitszeichen und du hast die Rückrichtung.

MFG,
Gono.

Bezug
                                
Bezug
Unabhängigkeitsbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:03 Do 16.02.2012
Autor: Infostudent

Besten Dank mal wieder :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]