www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationUnbestimmtes Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Unbestimmtes Integral
Unbestimmtes Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Mi 21.01.2009
Autor: drunkenmunky

Aufgabe
[mm] \integral_{}^{}{x*\wurzel[3]{4x+3} dx} [/mm]

Hallo,

ich habe gedacht das löse ich mittels partieller Integration, wobei ich x ableite und [mm] \wurzel[3]{4x+3} [/mm] mit Substitution. dann erhalte ich:

[mm] x*\bruch{3}{16}*(4x+3)^\bruch{4}{3}-\integral_{}^{}{\bruch{3}{16}*(4x+3)^\bruch{4}{3} dx} [/mm]

jetzt substituier ich wieder u=4x+3 und komme auf

[mm] \bruch{3x}{16}*(4x+3)^\bruch{4}{3}-\bruch{9}{448}*(4x+3)^\bruch{7}{3}+C [/mm]

aber laut TR kommt was anderes raus. Könnt ihr mir sagen wo es falsch ist?

        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Mi 21.01.2009
Autor: MathePower

Hallo drunkenmunky,

> [mm]\integral_{}^{}{x*\wurzel[3]{4x+3} dx}[/mm]
>  Hallo,
>  4
> ich habe gedacht das löse ich mittels partieller
> Integration, wobei ich x ableite und [mm]\wurzel[3]{4x+3}[/mm] mit
> Substitution. dann erhalte ich:
>  
> [mm]x*\bruch{3}{16}*(4x+3)^\bruch{4}{3}-\integral_{}^{}{\bruch{3}{16}*(4x+3)^\bruch{4}{3} dx}[/mm]
>  
> jetzt substituier ich wieder u=4x+3 und komme auf
>  
> [mm]\bruch{3x}{16}*(4x+3)^\bruch{4}{3}-\bruch{9}{448}*(4x+3)^\bruch{7}{3}+C[/mm]
>  
> aber laut TR kommt was anderes raus. Könnt ihr mir sagen wo
> es falsch ist?


Ich denke mal, daß der TR noch etwas zusammengefasst hat,

und zwar so, daß dann da steht:


[mm]\integral_{}^{}{x*\wurzel[3]{4x+3} \ dx}=\alpha*\left(4x+3\right)^{7/3}+\beta*\left(4x+3\right)^{4/3}+C[/mm]


Gruß
MathePower

Bezug
                
Bezug
Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Mi 21.01.2009
Autor: drunkenmunky

nicht so ganz. hier das Bild vom TR

[Dateianhang nicht öffentlich]

ist das das gleiche?

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Mi 21.01.2009
Autor: MathePower

Hallo drunkenmunky,

> nicht so ganz. hier das Bild vom TR
>  
> [Dateianhang nicht öffentlich]
>  
> ist das das gleiche?

Ja, das passt:

[mm]\bruch{3x}{16}\cdot{}(4x+3)^\bruch{4}{3}-\bruch{9}{448}\cdot{}(4x+3)^\bruch{7}{3}+C =\left(4x+3\right)^{4/3}*\left(\bruch{3}{16}x-\bruch{9}{448}*\left(4x+3\right)\right)+C[/mm]

[mm]=\left(4x+3\right)^{4/3}*\left( \ \left(\bruch{3}{16} - \bruch{9*4}{448}\ \right) x-\bruch{3*9}{448}*\right)+C[/mm]

[mm]=\left(4x+3\right)^{4/3}*\left( \ \left(\bruch{3*28}{16*28} - \bruch{4*9}{448}\ \right) x-\bruch{3*9}{448}*\right)+C[/mm]

[mm]=\left(4x+3\right)^{4/3}*\left( \ \left(\bruch{84}{448} - \bruch{36}{448}\ \right) x-\bruch{3*9}{448}*\right)+C[/mm]

[mm]=\left(4x+3\right)^{4/3}*\left( \ \bruch{48}{448}x-\bruch{3*9}{448}*\right)+C[/mm]

[mm]=\left(4x+3\right)^{4/3}*\left( \ \bruch{3*16}{448}x-\bruch{3*9}{448}*\right)+C[/mm]

[mm]=\bruch{3}{448}\left(4x+3\right)^{4/3}*\left( \ 16x-9 \ \right)+C[/mm]


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]