www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungUnbestimmtes Integral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Unbestimmtes Integral
Unbestimmtes Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Do 15.09.2011
Autor: Stef1234

Aufgabe
[mm] \integral \bruch{x^3-x^2-7*x+7}{x-1} \, [/mm] dx = [mm] \integral \bruch{(x-1)*(x-\wurzel{7})*(x+\wurzel{7})}{x-1} \, [/mm] dx = [mm] \integral (x-\wurzel{7})*(x+\wurzel{7}) [/mm] = [mm] \integral (x^2-7)\, [/mm] dx = [mm] \bruch{1}{3}x^3-7x+c [/mm] , [mm] c\in\IR [/mm]

Bei dieser Aufgabe verstehe ich nicht wie man von dem Anfangs Integral bis zum "Ergebnis" kommt. Ich weiß nicht wie derjenige von dem ich die Aufgabe hat die x'en Ausgeklammert hat so das er den Bruch wegkürzen konnte. Ich habe hier nur noch eine Nebenrechnung von ihm mit dem Horner Schema. Ich hoffe mir kann hier jemand die einzelnen Schritte erklären.
MfG
Stefan

        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Do 15.09.2011
Autor: Schadowmaster

Nun, interessant ist wohl der erste Schritt:
[mm] $x^3 [/mm] - [mm] x^2 [/mm] -7x +7 = [mm] (x-1)(x-\sqrt{7})(x+ \sqrt{7})$ [/mm]
Das kannst du von rechts nach links sehen indem du es ausmultiplizierst.
Von links nach rechts kriegst man es in erster Linie mit Polynomdivision hin.
Du errätst eine der Nullstellen (x = 1) und machst dann eine Polynomdivision.


Der Rest der Umformungen sind Kürzungen, ausmultiplizieren und integrieren.

MfG

Schadowmaster

Bezug
                
Bezug
Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 Do 15.09.2011
Autor: Stef1234

Und wie hast du denn Bruch wegbekommen? Polynomdivision wurde uns nicht gezeigt dürfen wir also auch nicht verwenden, dafür haben wir dann aber das Horner Schema

Bezug
                        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Do 15.09.2011
Autor: schachuzipus

Hallo,


> Und wie hast du denn Bruch wegbekommen?

Gar nicht, das war nur die Umformung für den Zähler!

> Polynomdivision
> wurde uns nicht gezeigt dürfen wir also auch nicht
> verwenden, dafür haben wir dann aber das Horner Schema


Gruß

schachuzipus


Bezug
                
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Do 15.09.2011
Autor: abakus


> Nun, interessant ist wohl der erste Schritt:
>  [mm]x^3 - x^2 -7x +7 = (x-1)(x-\sqrt{7})(x+ \sqrt{7})[/mm]

Hallo,
wozu denn diese Wurzeln? Die nimmt man nur, wenn man Schüler erschrecken will.
Es ist [mm] x^3-x^2=x^2(x-1), [/mm] und -7x+7=-7(x-1)
Somit ist der Zähler [mm] (x-1)(x^2-7), [/mm] wobei sich das (x-1) mit dem Nenner wegkürzt.
Gruß Abakus

>  Das
> kannst du von rechts nach links sehen indem du es
> ausmultiplizierst.
>  Von links nach rechts kriegst man es in erster Linie mit
> Polynomdivision hin.
>  Du errätst eine der Nullstellen (x = 1) und machst dann
> eine Polynomdivision.
>  
>
> Der Rest der Umformungen sind Kürzungen, ausmultiplizieren
> und integrieren.
>  
> MfG
>  
> Schadowmaster


Bezug
                        
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Do 15.09.2011
Autor: Stef1234

Vielen dank für eure Antworten. Das hat mir jetzt wirklich Weitergeholfen.
MfG
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]