www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationUneigentliches Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Uneigentliches Integral
Uneigentliches Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliches Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 Fr 31.08.2007
Autor: ditoX

Hallo!

Ich habe gerade ein Verständnisproblem bei folgenden uneigentlichen Integral. Insbesondere beim zweiten Lösungsschritt, wo man ja den Limes für Lambda gegen unendlich bildet. Das Integral habe ich bereits gelöst (mit Parzialbruchzerlegung) müsste eigentlich so stimmen:

[mm] \integral_{1}^{\lambda}{\bruch{1-x}{1+x^3} dx} [/mm] = [mm] \bruch{2}{3} ln(\lambda+1) [/mm] - [mm] \bruch{1}{3} ln(\lambda^2-\lambda+1) [/mm] - [mm] \bruch{2}{3} [/mm] ln(2)

so, nun muss ja der Limes gebildet werden:

[mm] \limes_{\lambda\rightarrow\infty} (\bruch{2}{3} ln(\lambda+1) [/mm] - [mm] \bruch{1}{3} ln(\lambda^2-\lambda+1) [/mm] - [mm] \bruch{2}{3} [/mm] ln(2))

und da seh ich gerade nicht ganz klar :-(

denn  [mm] \limes_{\lambda\rightarrow\infty} (\bruch{2}{3} ln(\lambda+1)) [/mm] = [mm] \infty [/mm] , oder?

und  [mm] \limes_{\lambda\rightarrow\infty} (\bruch{1}{3} ln(\lambda^2-\lambda+1)) [/mm] = [mm] \infty [/mm] ,oder?

aber [mm] \infty [/mm] - [mm] \infty [/mm] = nicht definiert, oder???

Wie kann dann das Endergebnis - [mm] \bruch{2}{3} [/mm] ln(2) sein???

Was mache ich falsch? Oder wie geht ihr schritt für schritt vor, um diesen Limes zu bilden?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Fr 31.08.2007
Autor: angela.h.b.


> so, nun muss ja der Limes gebildet werden:
>  
> [mm]\limes_{\lambda\rightarrow\infty} (\bruch{2}{3} ln(\lambda+1)[/mm]
> - [mm]\bruch{1}{3} ln(\lambda^2-\lambda+1)[/mm] - [mm]\bruch{2}{3}[/mm]
> ln(2))

> [...]
>  
> Was mache ich falsch?

Hallo,

Du gehst zu plump ans Werk. Hier ist etwas Raffinesse vonnöten...

[mm] \limes_{\lambda\rightarrow\infty} (\bruch{2}{3} ln(\lambda+1) [/mm] - [mm] \bruch{1}{3} ln(\lambda^2-\lambda+1) [/mm] - [mm] \bruch{2}{3}ln(2)) [/mm]

=- [mm] \bruch{2}{3}ln(2) +\bruch{1}{3}\limes_{\lambda\rightarrow\infty}(2ln(\lambda+1)-ln(\lambda^2-\lambda+1)) [/mm] = [mm] -\bruch{2}{3}ln(2) +\bruch{1}{3}\limes_{\lambda\rightarrow\infty}(ln((\lambda+1)^2)-ln(\lambda^2-\lambda+1)) [/mm] = [mm] -\bruch{2}{3}ln(2) +\bruch{1}{3}\limes_{\lambda\rightarrow\infty}(ln\bruch{(\lambda+1)^2}{(\lambda^2-\lambda+1)}) [/mm] = [mm] -\bruch{2}{3}ln(2) +\bruch{1}{3}\limes_{\lambda\rightarrow\infty}(ln(1+\bruch{3\lambda}{(\lambda^2-\lambda+1)}) [/mm] =...

JETZT den Grenzwert berechnen.

Gruß v. Angela





Bezug
                
Bezug
Uneigentliches Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Fr 31.08.2007
Autor: ditoX

hmm, naja, gut, scheint zu stimmen, aber ganz schön kompliziert zu denken, um das gleich so zu sehen. Und das 2 ln(a) = [mm] ln(a^2) [/mm] is wusst ich auch nicht einfach so, aber das scheint wohl sowas zu sein, was man dann einfach wissen muss, sonst hat man schon verloren :-(

Naja, danke für die Antwort :-)

Bezug
                        
Bezug
Uneigentliches Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:41 Fr 31.08.2007
Autor: angela.h.b.

>Und das 2
> ln(a) = [mm]ln(a^2)[/mm] is wusst ich auch nicht einfach so, aber
> das scheint wohl sowas zu sein, was man dann einfach wissen
> muss,

Oh ja, das muß man wissen...
Hat man in Kl. 10 gelernt.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]