Unendlich erzeugte Faktorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:32 Sa 21.01.2006 | Autor: | aiyudi |
Aufgabe | V ist ein Vektorraum über einen Körper K, U und W Unterräume von V. Beweisen od. widerlegen Sie:
1) Wenn V/U oder V/W endlich erzeugt, dann ist V/(U+W) endlich erzeugt.
2) Wenn V/U+W) endlich erzeugt, dann ist V/U oder V/W endlich erzeugt. |
Liebe Mathematik-Genies,
zu der oben genannten Aufgabenstellung habe ich nun folgende Fragen (vom Prinzip habe ich den endlich dimensionalen Vektorraum verstanden, und zum unendl. erzeugten Faktorraum habe ich nichts im Forum gefunden):
- heißt unendlich erzeugt, daß es sich um ein unendliches Erzeugendensystem handelt? (Wenn ja, dann muß die Dimensions eines unendlich erzeugten Vektorraums/Unterraums etc. ja nicht unbedingt unendlich sein, oder?)
- wie muß ich mir denn V/(U+W) vorstellen?
Ich habe zunächst damit begonnen, jeweils 3 Fälle zu unterscheiden: V/U endl. erzeugt und V/W unendl. erzeugt, beide endlich erzeugt, V/W unendl. erzeugt und V/U endl. erzeugt.
Aber dann komme ich aufgrund oben gestellter Fragen nicht mehr richtig weiter... Insgesamt habe ich nun gedacht, daß die Behauptungen nur in einem der drei Fälle zutreffen, und somit sind beide widerlegt.
Es wäre toll, wenn sich jemand finden würde, der mir diese zwei Fragen (nicht die gesamte Aufgabenstellung) beantworten könnte.
Vielen Dank für Eure Hilfe im voraus!
Viele Grüße
Judith
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:42 Sa 21.01.2006 | Autor: | Hanno |
Hallo.
> - heißt unendlich erzeugt, daß es sich um ein unendliches Erzeugendensystem handelt? (Wenn ja, dann muß die Dimensions eines unendlich erzeugten Vektorraums/Unterraums etc. ja nicht unbedingt unendlich sein, oder?)
Ich denke, dass die Dimension gemeint ist. Es ist also zu prüfen, ob mit endlicher Dimension von $V/U$ oder $V/W$ auch $V/(U+W)$ endliche Dimension hat und umgekehrt.
> Ich habe zunächst damit begonnen, jeweils 3 Fälle zu unterscheiden: V/U endl. erzeugt und V/W unendl. erzeugt, beide endlich erzeugt, V/W unendl. erzeugt und V/U endl. erzeugt.
Den letzten Fall kannst du missachten, da dort lediglich $U$ und $V$ vertauscht wurden.
Für die erste Aufgabe aber ist auch der zweite Fall nicht von Bedeutung; nimm an, es sei $V/U$ endlichdimensional und prüfe, ob daraus auch die Endlichkeit der Dimension von $V/(U+W)$ folgt (mache dabei keine Voraussetzungen über $V/W$).
Noch ein paar Tips:
Sei $V/U$ endlichdimensional, so gibt es Vektoren [mm] $\{v_1,v_2,...,v_n\}$, [/mm] sodass [mm] $\{v_1+U,v_2+U,...,v_n+U\}$ [/mm] Basis von $V/U$ ist. Versuche nun, mit [mm] $v_1,v_2,...,v_n$ [/mm] ein Erzeugendensystem für $V/(U+W)$ zu finden (wie sieht es mit den Nebenklassen [mm] $v_1+(U+W),...,v_n+(U+W)$ [/mm] aus?
Bei (b) könntest du den Raum der Binärfolgen, sprich [mm] $2^{\IN}$ [/mm] betrachten. Setze z.b. $U$ die Menge der Folgen, für die jedes ungerade Glied 0 ist, $V$ die Menge der Folgen, für die jedes gerade Glied $0$ ist.
Liebe Grüße,
Hanno
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:50 So 22.01.2006 | Autor: | aiyudi |
Hallo Hanno, vielen lieben Dank für Deine schnelle Antwort....
leider bin ich mit dieser Aufgabe immer noch nicht sehr viel weitergekommen.... sondern im Moment ein wenig verwirrt - deswegen weiß ich auch gerade nicht, was ich noch konkret fragen könnte... macht aber nichts. Noch habe ich ein bißchen Zeit.
Noch einen schönen Sonntag!
VG
Judith
|
|
|
|