www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenUnendliche Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Unendliche Summe
Unendliche Summe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unendliche Summe: Ansatz
Status: (Frage) beantwortet Status 
Datum: 17:41 Do 15.11.2012
Autor: balstobi

Aufgabe
Berechnen Sie die unendliche Summe [mm] \summe_{i=1}^{n} [/mm] untere Grenze n=0 obere Grenze = unendlich von 1 / 2n

Hallo,

ich habe versch. Foren durchforstet, konnte bisher aber keinen Ansatz finden, wäre echt nett, wenn mir jmd einen Tipp für den Ansatz geben könnte!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unendliche Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Do 15.11.2012
Autor: schachuzipus

Hallo balstobi,


> Berechnen Sie die unendliche Summe [mm]\summe_{i=1}^{n}[/mm] untere
> Grenze n=0 obere Grenze = unendlich von 1 / 2n
>  Hallo,
>  
> ich habe versch. Foren durchforstet, konnte bisher aber
> keinen Ansatz finden, wäre echt nett, wenn mir jmd einen
> Tipp für den Ansatz geben könnte!

Du schreibst zwar [mm]\sum\limits_{n=1}^{\infty}\frac{1}{2}n[/mm], aber ich nehme an, es ist die Reihe [mm]\sum\limits_{n=1}^{\infty}\frac{1}{2^n}[/mm] gemeint?! Zumal die erstere Reihe gegen [mm]\infty[/mm] divergiert.

Klicke mal auf die Reihe, dann wird ein möglicher code angezeigt ...

Ihr habt bestimmt die geometr. Reihe [mm]\sum\limits_{n=0}^{\infty}q^n[/mm] kennengelernt und auch, dass sie für [mm]|q|<1[/mm] den Wert [mm]\frac{1}{1-q}[/mm] hat.

Beachte bei deiner Reihe noch folgendes:

Es ist [mm]\frac{1}{2^n}=\left(\frac{1}{2}\right)^n[/mm] und deine Reihe startet bei [mm]n=1[/mm] und nicht bei [mm]n=0[/mm].

Das musst du bei der Berechnung des Reihenwertes berücksichtigen!


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
                
Bezug
Unendliche Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Do 15.11.2012
Autor: balstobi

Danke erstmal, mit der Folge hast du Recht, das wird mir in Zukunft nicht mehr passieren ;)
Die geometrische Reihe haben wir kurz angerissen, aber deswegen hab ich auch keine Ahnung wie ich sie anwenden soll. In meinem Beispiel wäre q= 1/2 und somit 1 / 1- 0,5 ,aber mir fehlt jeglicher Plan da weiter zu machen, ich habe noch was von Partialsummen gelesen, aber das kann ich hier alles nicht anweden.

Bezug
                        
Bezug
Unendliche Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Do 15.11.2012
Autor: fred97


> Danke erstmal, mit der Folge hast du Recht, das wird mir in
> Zukunft nicht mehr passieren ;)
> Die geometrische Reihe haben wir kurz angerissen, aber
> deswegen hab ich auch keine Ahnung wie ich sie anwenden
> soll. In meinem Beispiel wäre q= 1/2 und somit 1 / 1- 0,5

Das ist es doch. Der Reihenwert ist somit 2

FRED

> ,aber mir fehlt jeglicher Plan da weiter zu machen, ich
> habe noch was von Partialsummen gelesen, aber das kann ich
> hier alles nicht anweden.


Bezug
                                
Bezug
Unendliche Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Do 15.11.2012
Autor: balstobi

Hm okay, aber mal angenommen das n wäre 0, dann würde $ |q|<1 $ nicht mehr stimmen, da für n = 0 das Ergebnis von 1/ [mm] 2^n [/mm] gleich 1 wäre. Wie würde man da rechnen?

Vielen Dank für eure schnellen Antworten!

Bezug
                                        
Bezug
Unendliche Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Do 15.11.2012
Autor: schachuzipus

Hallo nochmal,


> Hm okay, aber mal angenommen das n wäre 0, dann würde
> [mm]|q|<1[/mm] nicht mehr stimmen, da für n = 0 das Ergebnis von 1/
> [mm]2^n[/mm] gleich 1 wäre. Wie würde man da rechnen?


Du meinst, wenn du [mm]\sum\limits_{n=0}^{\infty}\frac{1}{2^n}[/mm] hättest?

Dann wäre das eine lupenreine geometr. Reihe mit dem Wert [mm]\frac{1}{1-1/2}=2[/mm]

Deine geht aber bei [mm]n=1[/mm] los, also [mm]\sum\limits_{n=1}^{\infty}\frac{1}{2^n}[/mm]

Diese Reihe hat gegenüber der "lupenreinen" Reihe den Summanden für [mm]n=0[/mm] nicht, du musst also bei [mm]\sum\limits_{n=0}^{\infty}\frac{1}{2^n}[/mm] genau diesen Summanden, also [mm]\frac{1}{2^0}=1[/mm] abziehen.

Also [mm]\sum\limits_{n=1}^{\infty}\frac{1}{2^n}=\left(\sum\limits_{n=0}^{\infty}\frac{1}{2^n}\right)-\frac{1}{2^0}=\frac{1}{1-1/2}-1=2-1=1[/mm]

>  
> Vielen Dank für eure schnellen Antworten!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]