www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisUngleichheit zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Ungleichheit zeigen
Ungleichheit zeigen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichheit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Di 24.02.2009
Autor: Vogelfaenger

Aufgabe
Zeigt, dass

[mm] |\zeta(z)\prod_{k=1}^{N}(1-\bruch{1}{p_k^z})-1|\leq \sum_{n=p_{N+1}}^\infty \bruch{1}{n^{Re z}} [/mm]  Re(z) > 1,
wo [mm] \zeta(z) [/mm] die Riemann zeta Funktion ist: [mm] \sum_{n=1}^\infty \bruch{1}{n^z}, [/mm] Re(z) > 1 und [mm] p_k [/mm] die Sequenz der Primzahlen ist: 2,3,5, ...

Hallo alle

Hat jemand bitte eine Idee, diese Ungleichheit zu beweisen?
Es steht schon so was wie ein Beweis hier:
http://www.google.com/books?id=Pptx-nLUFnoC&printsec=frontcover&hl=da#PPA2,M1 (seite 2)
aber das sieht ziemlich kompliziert aus, man zeigt offenbar zuerst eine andere Identität und dann folgt die Ungleichheit als Resultat davon. Man benutzt im Buch offenbar Induktion über die Primzahlen, die identität
[mm] \prod_{p\in S}(1-{p^{-s}})\zeta(s)=\sum_{m:(m,q(S))=1} m^{-s} [/mm]
zu zeigen. Aber wie kommt man dann genau von hier bis zur Ungleichung? Das haben sie nicht ordentlich erklärt.

        
Bezug
Ungleichheit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:20 Mi 25.02.2009
Autor: felixf

Hallo

> Zeigt, dass
>  
> [mm]|\zeta(z)\prod_{k=1}^{N}(1-\bruch{1}{p_k^z})-1|\leq \sum_{n=p_{N+1}}^\infty \bruch{1}{n^{Re z}}[/mm]
>  Re(z) > 1,

>   wo [mm]\zeta(z)[/mm] die Riemann zeta Funktion ist:
> [mm]\sum_{n=1}^\infty \bruch{1}{n^z},[/mm] Re(z) > 1 und [mm]p_k[/mm] die
> Sequenz der Primzahlen ist: 2,3,5, ...
>
>  Hallo alle
>  
> Hat jemand bitte eine Idee, diese Ungleichheit zu
> beweisen?
>  Es steht schon so was wie ein Beweis hier:
>  
> http://www.google.com/books?id=Pptx-nLUFnoC&printsec=frontcover&hl=da#PPA2,M1
> (seite 2)
>  aber das sieht ziemlich kompliziert aus,

So kompliziert ist das jetzt aber auch wieder nicht. :)

> man zeigt
> offenbar zuerst eine andere Identität und dann folgt die
> Ungleichheit als Resultat davon. Man benutzt im Buch
> offenbar Induktion über die Primzahlen, die identität
>   [mm]\prod_{p\in S}(1-{p^{-s}})\zeta(s)=\sum_{m:(m,q(S))=1} m^{-s}[/mm]
>  
> zu zeigen. Aber wie kommt man dann genau von hier bis zur
> Ungleichung? Das haben sie nicht ordentlich erklärt.

Nun: du hast $S = [mm] \{ p_1, \dots, p_N \}$; [/mm] damit ist [mm] $\sum_{m:(m,q(S))=1} m^{-s} [/mm] - 1 = [mm] \sum_{\stackrel{m:(m,q(S))=1}{m > p_N}} m^{-s}$ [/mm] nach der Bemerkung aus dem Buch.

Weiterhin ist [mm] $\left| \sum_{\stackrel{m:(m,q(S))=1}{m > p_N}} m^{-s} \right| \le \sum_{\stackrel{m:(m,q(S))=1}{m > p_N}} |m^{-s}| [/mm] = [mm] \sum_{\stackrel{m:(m,q(S))=1}{m > p_N}} m^{-\Re s}$, [/mm] und wenn man jetzt einfach ueber alle $m > [mm] p_N$ [/mm] summiert und nicht nur ueber die $m > [mm] p_N$ [/mm] mit $(m,q(S))=1$, dann bekommt man die gesuchte Abschaetzung.

LG Felix


Bezug
                
Bezug
Ungleichheit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Mi 25.02.2009
Autor: Vogelfaenger

Vielen Dank für die Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]