www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUngleichheiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Ungleichheiten
Ungleichheiten < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichheiten: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:50 Mo 10.11.2008
Autor: Janine1506

Aufgabe
Zeigen Sie: Für alle x,y [mm] \in \IR [/mm] gilt:
(a) |x| [mm] \le [/mm] |y| -->  [mm] \bruch{|x|}{1 + |x|} \le \bruch{|y|}{1 + |y|} [/mm]
(b) [mm] \bruch{|x+y|}{1 + |x+y|} \le \bruch{|x|}{ 1 + |x|} [/mm] + [mm] \bruch{|y|}{1+|y|} [/mm]

Hallo,
ich finde irgendwie keinen Ansatz, wie ich das richtig beweisen kann bei a.
Bei b hab ich erstmal das was auf der rechten Seite steht so zusammengefasst:

[mm] \bruch{|x+y|}{1+|x+y|} \le \bruch{|x|+|y|}{2+|x|+|y|}. [/mm]
Theoretischer WEise stimmt das ja, denn der Ausdruck auf der linken Seite ist kleiner als der auf der Rechten. Aber das reicht doch nicht als Beweis bei b?


        
Bezug
Ungleichheiten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mo 10.11.2008
Autor: reverend

Aufgabe a) ist eine gute Vorbereitung für b). Dazu gleich.
Deine Zusammenfassung der rechten Seite in Aufgabe b) stimmt nicht. Bruch + Bruch geht nicht, indem man Zähler + Zähler und Nenner + Nenner nimmt. Beispiel: Du bekommst erst ein Drittel  Deines monatlichen Geldes bezahlt (ca. 33,3%), später eine Hälfte (50%), und noch später ein weiteres Sechstel (ca. 16,7%). Zusammengenommen ist das das ganze Geld (rechne mal die Prozente nach!).

Nach Deiner Rechnung wäre das:
[mm] \bruch{1}{3}+\bruch{1}{2}+\bruch{1}{6}=\bruch{1+1+1}{3+2+6}=\bruch{3}{11} [/mm]
Das wären, in Prozent, runde 27,3%. Das ist falsch!

Bevor Du die Zähler addieren darfst, muss erst der Nenner gleich sein. Dafür musst Du beide Brüche erweitern. Hierzu jetzt die rechte Gleichung aus Aufgabe a):

[mm] \bruch{|x|}{1 + |x|} \le \bruch{|y|}{1 + |y|} [/mm]     |beide Seiten werden erweitert

[mm] \bruch{|x|}{1+|x|}*\bruch{1+|y|}{1+|y|} \le \bruch{|y|}{1+|y|}*\bruch{1+|x|}{1+|x|} [/mm] bzw.

[mm] \bruch{|x|*(1+|y|)}{(1+|x|)*(1+|y|)} \le \bruch{|y|*(1+|x|)}{(1+|x|)*(1+|y|)} [/mm]     |Mit d.Nenner (immer >0) multiplizieren

|x|*(1+|y|) [mm] \le [/mm] |y|*(1+|x|)
|x|+|x||y| [mm] \le [/mm] |y|+|x||y|            | -|x||y|
|x| [mm] \le [/mm] |y|
w.z.b.w.

Bezug
                
Bezug
Ungleichheiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:15 Mo 10.11.2008
Autor: reverend

Wenn Du das verstanden hast, dann mach Dich nochmal nach allen Regeln der Bruchrechnung an Aufgabe b.

Bezug
                        
Bezug
Ungleichheiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Mo 10.11.2008
Autor: Janine1506

Okay danke, diese Umformung hab ich verstanden,aber:



Wie kommst du denn darauf das aus

|x|*(1+|y|) [mm] \le [/mm] |y|*(1+|x|) , dieser hier wird:

|x|+|x||y|  [mm] \le [/mm]  |y|+|x||y| .
Das verstehe ich nicht:

Wird nicht aus |x| * (1+ |y|) [mm] \le [/mm] |y| * (1+|x|) umgeformt, dies hier:
|x| + |y| [mm] \le [/mm] |y| + |x|?

Bezug
                                
Bezug
Ungleichheiten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Mo 10.11.2008
Autor: reverend

Nein, wirds nicht. Distributivgesetz: a*(b+c)=a*b+a*c

Auch, wenn a hier |x| heißt, b=1 ist und c=|y| (auf der rechten Seite umgekehrt)...
Beachte die Klammern in der Multiplikationsaufgabe!

Bezug
                                        
Bezug
Ungleichheiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 Mo 10.11.2008
Autor: Janine1506

Ach Mensch ja, jetzt hab ichs auch gemerkt!!!
Wie blöd :-)

Aber trotzdem ein großes Danke!!!
gruß von Janine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]