www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenUngleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Ungleichung
Ungleichung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Di 04.12.2007
Autor: ONeill

Aufgabe
Für welche [mm] z\varepsilonC [/mm] gilt:
[mm] a.)|\bruch{z+i}{z-i}|\le1 [/mm]
[mm] b.)Re|\bruch{1+z}{1-z}|\ge0 [/mm]
Tip:z=x+iy einsetzen und eine möglichst einfache Ungleichung für x,y ableiten.
Fertigen Sie auch eine Skize der entsprechenden Mengen an.

Hallo!
Bin mir nicht ischer, wie diese Aufgaben zu lösen sind.
a.)habe erstmal mit dem Betrag von z-i multipliziert und dann z=x+iy eingesetzt. Dabei fällt x dann weg und ich komme am Ende auf [mm] y\le0 [/mm]
Das heißt die Ungleichung gilt für alle [mm] y\le0. [/mm]
Wie komme ich aber nun darauf, für welche z die Ungleichung erfüllt ist?

b.)Da habe ich mit Betrag 1-z multipliziert und komme dann auf [mm] |z|\ge-1 [/mm]
Damit wäre die Gleichung erfüllt, für z aus C mit [mm] z\ge-1 [/mm] und [mm] z\not=1 [/mm]

Ist das soweit richtig? und wie soll ich dazu Skizzen machen?
Vielen Dank für eure Mühe!
Gruß ONeill

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:55 Mi 05.12.2007
Autor: schachuzipus

Hallo ONeill,


> Für welche [mm]z\varepsilonC[/mm] gilt:
>  [mm]a.)|\bruch{z+i}{z-i}|\le1[/mm]
>  [mm]b.)Re|\bruch{1+z}{1-z}|\ge0[/mm]
>  Tip:z=x+iy einsetzen und eine möglichst einfache
> Ungleichung für x,y ableiten.
>  Fertigen Sie auch eine Skize der entsprechenden Mengen
> an.
>  Hallo!
>  Bin mir nicht ischer, wie diese Aufgaben zu lösen sind.
>  a.)habe erstmal mit dem Betrag von z-i multipliziert und
> dann z=x+iy eingesetzt. Dabei fällt x dann weg und ich
> komme am Ende auf [mm]y\le0[/mm] [ok]
>  Das heißt die Ungleichung gilt für alle [mm]y\le0.[/mm]
>  Wie komme ich aber nun darauf, für welche z die
> Ungleichung erfüllt ist?

Nun, das sind alle $z=x+iy$ mit [mm] $y\le [/mm] 0$, also alle komplexen Zahlen, die einen negativen Imaginärteil (bzw. Imaginärteil 0) haben.

Das ist wohl die Halbebene unterhalb der x-Achse (einschließlich der x-Achse)
  

> b.)Da habe ich mit Betrag 1-z multipliziert und komme dann
> auf [mm]|z|\ge-1[/mm]
>  Damit wäre die Gleichung erfüllt, für z aus C mit [mm]z\ge-1[/mm]
> und [mm]z\not=1[/mm]

M.E. ergibt Aufgabe (b) recht wenig Sinn, der Betrag einer komplexen Zahl $w=a+bi$, also $|w|$ ist doch immer reell und definiert als [mm] $\sqrt{a^2+b^2}$, [/mm] ist also stets positiv bzw. [mm] $=0\gdw [/mm] a=b=0$, also $w=0$

Also erfüllen alle komplexen Zahlen $z$, für die der Bruch [mm] $\frac{1+z}{1-z}$ [/mm] definiert ist, also alle [mm] $z\in\IC\setminus\{1\}$ [/mm] die Ungleichung


Meine Vermutung: Da steht [mm] $Re\left(\frac{1+z}{1-z}\right)\ge [/mm] 0$

Das wäre eher im Sinne einer Aufgabenstellung ;-) , zumal ein schönes geometrisches Gebilde dabei herauskommt.

Falls ich mit meiner Vermutung recht haben sollte, benutze den Tipp und setze $z=x+iy$ ein und erweitere dann den Bruch mit dem konjugiert Komplexen des Nenners....



> Ist das soweit richtig? und wie soll ich dazu Skizzen
> machen?
>  Vielen Dank für eure Mühe!
>  Gruß ONeill


Gruß

schachuzipus

Bezug
                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:57 Sa 08.12.2007
Autor: ONeill

Hallo schachuzipus !
Vielen Dank für deine Hilfe!
Gruß ONeill


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]