www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieUngleichung beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Ungleichung beweisen
Ungleichung beweisen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Fr 05.05.2017
Autor: Die_Suedkurve

Hallo zusammen,

ich hänge beim Verständnis eines Beweises fest und würde gerne dazu die untenstehende Ungleichung verstehen.
Ich hoffe, ihr könnt mir dabei helfen. :)

Seien [mm] $\zeta_i$ [/mm] unabhängige Zufallsvariablen mit Erwartungswert 0 und [mm] $\sum_{i=1}^{n} \mathbb{E}(\zeta_i^2) [/mm] = 1$.
Definiere $W = [mm] \summe_{i=1}^{n} \zeta_i$. [/mm]
Nun soll angeblich gelten:

[mm] $\frac{1}{2} \mathbb{E} \left | 1 - \mathbb{E} \left ( \summe_{i=1}^{n} \zeta_i^2 \middle | W \right ) \right [/mm] | [mm] \le \frac{1}{2} \mathbb{E} \left | \summe_{i=1}^{n} \left ( \zeta_i^2 - \mathbb{E} \zeta_i^2 \right ) \right [/mm] |$.

Kann mir bitte jemand sagen, wie man darauf kommt?

Grüße

        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Fr 05.05.2017
Autor: tobit09

Hallo Die_Suedkurve!


> Seien [mm]\zeta_i[/mm] unabhängige Zufallsvariablen mit
> Erwartungswert 0

(Deine Ungleichung gilt sogar unabhängig von der Bedingung [mm] $E\zeta_i=0$ [/mm] und der stochastischen Unabhängigkeit der [mm] $\zeta_i$.) [/mm]


> und [mm]\sum_{i=1}^{n} \mathbb{E}(\zeta_i^2) = 1[/mm].
>  
> Definiere [mm]W = \summe_{i=1}^{n} \zeta_i[/mm].

(Auch die Definition von W spielt keine Rolle für die Ungleichung.)


>  Nun soll angeblich
> gelten:
>  
> [mm]\frac{1}{2} \mathbb{E} \left | 1 - \mathbb{E} \left ( \summe_{i=1}^{n} \zeta_i^2 \middle | W \right ) \right | \le \frac{1}{2} \mathbb{E} \left | \summe_{i=1}^{n} \left ( \zeta_i^2 - \mathbb{E} \zeta_i^2 \right ) \right |[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

.

>  
> Kann mir bitte jemand sagen, wie man darauf kommt?

Auf einen Blick sichtbar ist die Gültigkeit dieser Ungleichung für mich nicht.
Aber sie lässt sich folgendermaßen herleiten:

Zunächst einmal sind die Faktoren $\frac12$ natürlich für die Gültigkeit der Ungleichung völlig egal; es genügt die Ungleichung

      $\mathbb{E} \left | 1 - \mathbb{E} \left ( \summe_{i=1}^{n} \zeta_i^2 \middle | W \right ) \right | \le \mathbb{E} \left | \summe_{i=1}^{n} \left ( \zeta_i^2 - \mathbb{E} \zeta_i^2 \right ) \right |$

zu zeigen.

Ich forme zunächst die linke Seite um, wobei ich $\sum_{i=1}^n\zeta_i^2$ mit $Y$ abkürze:

     $\mathbb{E} \left | 1 - \mathbb{E} \left ( \summe_{i=1}^{n} \zeta_i^2 \middle | W \right ) \right |=\mathbb{E} \left | \mathbb{E} \left( Y \middle | W \right ) -1\right |=E\left|E(Y|W)\right-E(1|W)|=E\left|E(Y-1|W)\right|$.

Nun forme ich die rechte Seite der zu zeigenden Ungleichung um:

      $\mathbb{E} \left | \summe_{i=1}^{n} \left ( \zeta_i^2 - \mathbb{E} \zeta_i^2 \right ) \right |=E|Y-\sum_{i=1}^nE\zeta_i^2|=E|Y-1|$.

Nach diesen Überlegungen genügt es also,

(*)      $E\left|E(X|W)\right|\le E|X|$

für die Zufallsgröße $X:=Y-1$ zu zeigen.

Tatsächlich gilt (*) für jede integrierbare oder nichtnegative Zufallsgröße X:

Gemäß Jensenscher Ungleichung für bedingte Erwartungswerte angewendet auf die (konvexe) Betragsabbildung erhalten wir $|E(X|W)|\le E(|X|\;|\;W)$ und damit wie gewünscht

      $E|E(X|W)|\le E E(|X|\;|\;W)=E|X|$.


Viele Grüße
Tobias

Bezug
                
Bezug
Ungleichung beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Fr 05.05.2017
Autor: Die_Suedkurve

Hallo Tobias,

ich danke dir für deine Hilfe. :)
Es war wie von mir vermutet nicht so schwierig, aber ich bin einfach nicht drauf gekommen. Ich habe nun aber auch gesehen, dass es einfach ein Spezialfall eines allgmeinen Falles ist.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]